Library Flocq.Calc.Fcalc_digits
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2010-2011 Sylvie Boldo
Copyright (C) 2010-2011 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
Copyright (C) 2010-2011 Guillaume Melquiond
Functions for computing the number of digits of integers and related theorems.
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_float_prop.
Require Import Fcore_digits.
Section Fcalc_digits.
Variable beta : radix.
Notation bpow e := (bpow beta e).
Theorem Zdigits_ln_beta :
forall n,
n <> Z0 ->
Zdigits beta n = ln_beta beta (Z2R n).
Theorem ln_beta_F2R_Zdigits :
forall m e, m <> Z0 ->
(ln_beta beta (F2R (Float beta m e)) = Zdigits beta m + e :> Z)%Z.
Theorem Zdigits_mult_Zpower :
forall m e,
m <> Z0 -> (0 <= e)%Z ->
Zdigits beta (m * Zpower beta e) = (Zdigits beta m + e)%Z.
Theorem Zdigits_Zpower :
forall e,
(0 <= e)%Z ->
Zdigits beta (Zpower beta e) = (e + 1)%Z.
Theorem Zdigits_le :
forall x y,
(0 <= x)%Z -> (x <= y)%Z ->
(Zdigits beta x <= Zdigits beta y)%Z.
Theorem lt_Zdigits :
forall x y,
(0 <= y)%Z ->
(Zdigits beta x < Zdigits beta y)%Z ->
(x < y)%Z.
Theorem Zpower_le_Zdigits :
forall e x,
(e < Zdigits beta x)%Z ->
(Zpower beta e <= Zabs x)%Z.
Theorem Zdigits_le_Zpower :
forall e x,
(Zabs x < Zpower beta e)%Z ->
(Zdigits beta x <= e)%Z.
Theorem Zpower_gt_Zdigits :
forall e x,
(Zdigits beta x <= e)%Z ->
(Zabs x < Zpower beta e)%Z.
Theorem Zdigits_gt_Zpower :
forall e x,
(Zpower beta e <= Zabs x)%Z ->
(e < Zdigits beta x)%Z.
Characterizes the number digits of a product.
This strong version is needed for proofs of division and square root
algorithms, since they involve operation remainders.
Theorem Zdigits_mult_strong :
forall x y,
(0 <= x)%Z -> (0 <= y)%Z ->
(Zdigits beta (x + y + x * y) <= Zdigits beta x + Zdigits beta y)%Z.
Theorem Zdigits_mult :
forall x y,
(Zdigits beta (x * y) <= Zdigits beta x + Zdigits beta y)%Z.
Theorem Zdigits_mult_ge :
forall x y,
(x <> 0)%Z -> (y <> 0)%Z ->
(Zdigits beta x + Zdigits beta y - 1 <= Zdigits beta (x * y))%Z.
Theorem Zdigits_div_Zpower :
forall m e,
(0 <= m)%Z ->
(0 <= e <= Zdigits beta m)%Z ->
Zdigits beta (m / Zpower beta e) = (Zdigits beta m - e)%Z.
End Fcalc_digits.
Definition radix2 := Build_radix 2 (refl_equal _).
Theorem Z_of_nat_S_digits2_Pnat :
forall m : positive,
Z_of_nat (S (digits2_Pnat m)) = Zdigits radix2 (Zpos m).