next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
DGAlgebras :: findTrivialMasseyOperation

findTrivialMasseyOperation -- Finds a trivial Massey operation on a set of generators of H(A)

Synopsis

Description

This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
Golod rings are defined by being those rings whose Koszul complex KR has a trivial Massey operation. Also, the existence of a trivial Massey operation on a DG algebra A forces the multiplication on H(A) to be trivial. An example of a ring R such that H(KR) has trivial multiplication, yet KR does not admit a trivial Massey operation is unknown. Such an example cannot be monomially defined, by a result of Jollenbeck and Berglund.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]

o1 = Q

o1 : PolynomialRing
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)

o2 = ideal (x x , x x , x x , x x , x x )
             3 5   4 5   1 6   3 6   4 6

o2 : Ideal of Q
i3 : R = Q/I

o3 = R

o3 : QuotientRing
i4 : A = koszulComplexDGA(R)

o4 = {Ring => R                                      }
      Underlying algebra => R[T , T , T , T , T , T ]
                               1   2   3   4   5   6
      Differential => {x , x , x , x , x , x }
                        1   2   3   4   5   6
      isHomogeneous => true

o4 : DGAlgebra
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 :      -- used 0.0129326 seconds
Computing generators in degree 2 :      -- used 0.0322326 seconds
Computing generators in degree 3 :      -- used 0.0718441 seconds

o5 = true
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 :      -- used 0.0022955 seconds
Computing generators in degree 2 :      -- used 0.0198659 seconds
Computing generators in degree 3 :      -- used 0.0206286 seconds
Computing generators in degree 4 :      -- used 0.01022 seconds
Computing generators in degree 5 :      -- used 0.00905322 seconds
Computing generators in degree 6 :      -- used 0.0085876 seconds

o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
       5 4   5 3   6 4   6 3   6 1    6 1 3    5 3 4    6 3 4    6 1 4   
     ------------------------------------------------------------------------
     x T T  + x T T , - x T T  + x T T , x T T T , x T T T  - x T T T }
      6 4 5    5 4 6     6 3 5    5 3 6   6 1 3 4   6 3 4 5    5 3 4 6

o6 : List
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 :      -- used 0.00235677 seconds
Computing generators in degree 2 :      -- used 0.0203466 seconds
Computing generators in degree 3 :      -- used 0.0215086 seconds
Computing generators in degree 4 :      -- used 0.00202206 seconds
Computing generators in degree 5 :      -- used 0.0019547 seconds
Computing generators in degree 6 :      -- used 0.00196391 seconds

o7 = {{3} | 0    0 0   0    0 0    0    0    0    0    |, {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    -x_6 0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    -x_6 |  {4} | x_6 0 0   0 0
      {3} | 0    0 0   0    0 0    -x_6 0    0    0    |  {4} | 0   0 x_6 0 0
      {3} | 0    0 0   0    0 0    0    0    -x_6 0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |  {4} | 0   0 0   0 0
      {3} | 0    0 0   0    0 0    0    0    0    0    |
      {3} | -x_5 0 x_6 -x_6 0 0    0    0    0    0    |
      {3} | 0    0 0   0    0 -x_6 0    0    0    0    |
      {3} | 0    0 0   0    0 0    0    0    0    0    |
      {3} | 0    0 0   0    0 0    0    0    0    0    |
     ------------------------------------------------------------------------
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 x_6 0 0 0 0 0   0 -x_6 0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 x_6 0 0    0 -x_6 0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   x_6 0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 0   0 0   0   0    0 0    0
     0 0 0 0 0   0 0 0 0 0   0 0    0 0    0 0 x_5 0 x_6 0   -x_5 0 -x_6 0
     ------------------------------------------------------------------------
     0   |, {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |,
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |  {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
     0   |  {5} | 0 0 0 0 0 0 0   0 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 0 0   |
     0   |
     0   |
     x_6 |
     0   |
     0   |
     0   |
     0   |
     0   |
     0   |
     ------------------------------------------------------------------------
     0, 0}

o7 : List
i8 : assert(tmo =!= null)
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]

o9 = Q

o9 : PolynomialRing
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)

              3   3   3   2 2 2
o10 = ideal (x , y , z , x y z )

o10 : Ideal of Q
i11 : R = Q/I

o11 = R

o11 : QuotientRing
i12 : A = koszulComplexDGA(R)

o12 = {Ring => R                          }
       Underlying algebra => R[T , T , T ]
                                1   2   3
       Differential => {x, y, z}
       isHomogeneous => true

o12 : DGAlgebra
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 :      -- used 0.00973302 seconds
Computing generators in degree 2 :      -- used 0.0207793 seconds
Computing generators in degree 3 :      -- used 0.0194069 seconds

o13 = false
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 :      -- used 0.00174406 seconds
Computing generators in degree 2 :      -- used 0.0132083 seconds
Computing generators in degree 3 :      -- used 0.0130836 seconds

        2     2     2       2 2       2 2       2   2         2 2     
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
          1     2     3         1         1 2         1 2         1 3 
      -----------------------------------------------------------------------
         2 2         2   2         2 2
      x*y z T T T , x y*z T T T , x y z*T T T }
             1 2 3         1 2 3         1 2 3

o14 : List
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 :      -- used 0.00174171 seconds
Computing generators in degree 2 :      -- used 0.013143 seconds
Computing generators in degree 3 :      -- used 0.013189 seconds

Ways to use findTrivialMasseyOperation :