next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2     2    2     2        2    2   2       2   2 2      2 
o2 = ideal (d e - a x, b e - o w, g*k*x  - o , d k*u - s , g j  - f*k ,
     ------------------------------------------------------------------------
        2 2    2   2   2    2
     d*g x  - t , g i*n  - w )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 2 3 3 3 4      3 2 3   4 3 4 4 2    3 2 4   4   4 4 3 4 4  
o3 = ideal (d e g j s x  - l*n o v , b i l o p  - c m q r*v , d j l s v  -
     ------------------------------------------------------------------------
      4 3 4 3 3   4 3 3   2 4   3    3 3
     f g k n w , a b f g*j k t*w  - e o )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.