i1 : P = chain 5; |
i2 : dropElements(P, {3}) o2 = Poset{cache => CacheTable{} } GroundSet => {1, 2, 4, 5} RelationMatrix => | 1 1 1 1 | | 0 1 1 1 | | 0 0 1 1 | | 0 0 0 1 | Relations => {{1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {4, 5}} o2 : Poset |
i3 : P - {4, 5} o3 = Poset{cache => CacheTable{} } GroundSet => {1, 2, 3} RelationMatrix => | 1 1 1 | | 0 1 1 | | 0 0 1 | Relations => {{1, 2}, {1, 3}, {2, 3}} o3 : Poset |
i4 : P = divisorPoset (2*3*5*7); |
i5 : Q = dropElements(P, e -> e % 3 == 0) o5 = Poset{cache => CacheTable{} } GroundSet => {1, 2, 5, 7, 10, 14, 35, 70} RelationMatrix => | 1 1 1 1 1 1 1 1 | | 0 1 0 0 1 1 0 1 | | 0 0 1 0 1 0 1 1 | | 0 0 0 1 0 1 1 1 | | 0 0 0 0 1 0 0 1 | | 0 0 0 0 0 1 0 1 | | 0 0 0 0 0 0 1 1 | | 0 0 0 0 0 0 0 1 | Relations => {{1, 2}, {1, 5}, {1, 7}, {1, 10}, {1, 14}, {1, 35}, {1, 70}, {2, 10}, {2, 14}, {2, 70}, {5, 10}, {5, 35}, {5, 70}, {7, 14}, {7, 35}, {7, 70}, {10, 70}, {14, 70}, {35, 70}} o5 : Poset |
i6 : Q == divisorPoset(2*5*7) o6 = true |