next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                                2           2   2 2    2 2       2    2   2 2
o2 = ideal (c*e - d*j, q*u*v - b , a*m*v - r , h u  - k w , d*h*u  - t , g u 
     ------------------------------------------------------------------------
          2   2 2      2
     - e*i , a h  - b*u )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2   3 3   3    2 3 3 3     2 2 2 4 4     3 4 3   4   2 4 4   
o3 = ideal (b c*f n o*t  - d g j v , a*e k n o t x - c g p , c e*g j t v -
     ------------------------------------------------------------------------
      4 2 4 3   3 4 3 2 4 3 3    4 2 3
     d m q r , a b f i n p v  - h q r )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.