
Utils

Utility functions in GAP

0.46

08/02/2017

Sebastian Gutsche

Max Horn

Alexander Hulpke

Stefan Kohl

Frank Lübeck

Øystein Skartsæterhagen

Chris Wensley

Utils 2

Sebastian Gutsche

Email: gutsche@mathematik.uni-kl.de

Homepage: http://wwwb.math.rwth-aachen.de/~gutsche/

Max Horn

Email: max.horn@math.uni-giessen.de

Homepage: http://www.quendi.de/math

Alexander Hulpke

Email: hulpke@math.colostate.edu

Homepage: http://www.math.colostate.edu/~hulpke

Stefan Kohl

Email: stefan@mcs.st-and.ac.uk

Homepage: http://www.gap-system.org/DevelopersPages/StefanKohl/

Frank Lübeck

Email: Frank.Luebeck@Math.RWTH-Aachen.De

Homepage: http://www.math.rwth-aachen.de:8001/~Frank.Luebeck

Øystein Skartsæterhagen

Email: oysteini@math.ntnu.no

Homepage: https://www.math.ntnu.no/~oysteini/

Chris Wensley

Email: c.d.wensley@bangor.ac.uk

Homepage: http://pages.bangor.ac.uk/~mas023/

mailto://gutsche@mathematik.uni-kl.de
http://wwwb.math.rwth-aachen.de/~gutsche/
mailto://max.horn@math.uni-giessen.de
http://www.quendi.de/math
mailto://hulpke@math.colostate.edu
http://www.math.colostate.edu/~hulpke
mailto://stefan@mcs.st-and.ac.uk
http://www.gap-system.org/DevelopersPages/StefanKohl/
mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de:8001/~Frank.Luebeck
mailto://oysteini@math.ntnu.no
https://www.math.ntnu.no/~oysteini/
mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/

Utils 2

Abstract

The Utils package provides a space for utility functions in a variety of GAP packages to be collected together

into a single package. In this way it is hoped that they will become more visible to package authors.

Any package author who transfers a function to Utils will become an author of Utils.

If deemed appropriate, functions may also be transferred from the main library.

Bug reports, suggestions and comments are, of course, welcome. Please contact the

last author at c.d.wensley@bangor.ac.uk or submit an issue at the GitHub repository

http://github.com/gap-packages/utils/issues/.

Copyright

© 2015-2017, The GAP Group. Utils is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either version 2 of the

License, or (at your option) any later version.

Acknowledgements

This documentation was prepared with the GAPDoc package [LN12] of Frank Lübeck and Max Neunhöffer.

The procedure used to mount new releases on GitHub uses the packages GitHubPagesForGAP [Hor14]

and ReleaseTools of Max Horn.

mailto://c.d.wensley@bangor.ac.uk
http://github.com/gap-packages/utils/issues/
http://www.fsf.org/licenses/gpl.html

Contents

1 Introduction 4

1.1 Information for package authors . 5

2 Lists, Sets and Strings 6

2.1 Functions for lists . 6

2.2 Distinct and Common Representatives . 9

2.3 Functions for strings . 10

3 Number-theoretic functions 11

3.1 Functions for integers . 11

4 Groups and homomorphisms 14

4.1 Functions for groups . 14

4.2 Functions for group homomorphisms . 16

5 Records 17

5.1 Functions for records . 17

6 Various other functions 18

6.1 Operations on folders . 18

6.2 File operations . 18

6.3 LATEX strings . 19

6.4 Applicable methods . 19

6.5 Conversion to MAGMA string . 20

7 The transfer procedure 22

References 24

3

Chapter 1

Introduction

The Utils package provides a space for utility functions from a variety of GAP packages to be col-

lected together into a single package. In this way it is hoped that they will become more visible to

other package authors. This package was �rst distributed as part of the GAP 4.8.2 distribution.

The package is loaded with the command

Example

gap> LoadPackage("utils");

Functions are currently being transferred from the following packages:

� QPA [Qt16];

� Conversion of a GAP group to a Magma output string, taken from various sources including

other.gi in the main library.

Transfer is complete (for now) for functions from the following packages:

� AutoDoc [GH16] (with function names changed);

� ResClasses [Koh16b];

� RCWA [Koh16a];

� XMod [WAOU16].

The package may be obtained either as a compressed .tar �le or as a .zip �le,

utils-version_number.tar.gz, by ftp from one of the following sites:

� the Utils GitHub release site: http://gap-packages.github.io/utils/.

� any GAP archive, e.g. http://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/utils.

Once the package is loaded, the manual doc/manual.pdf can be found in the documentation

folder. The html versions, with or without MathJax, may be rebuilt as follows:

4

http://gap-packages.github.io/utils/
http://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/utils

Utils 5

Example

gap> ReadPackage("utils", "makedoc.g");

It is possible to check that the package has been installed correctly by running the test �les:
Example

gap> ReadPackage("utils", "tst/testall.g");

#I Testing .../pkg/utils/tst/lists.tst

...

#I No errors detected while testing package utils

Note that functions listed in this manual that are currently in the process of being transferred are

only read from the source package Home (say), and so can only be used if Home has already been

loaded.

1.1 Information for package authors

A function (or collection of functions) is suitable for transfer from a package Home to Utils if the

following conditions are satis�ed.

� The function is suf�ciently non-specialised so that it might be of use to other authors.

� The function does not depend on the remaining functions in Home

� The function does not do what can already be done with a GAP library function.

� Documentation of the function and test examples are available.

� When there is more than one active author of Home, they should all be aware (and content) that

the transfer is taking place.

Authors of packages may be reluctant to let go of their utility functions. The following principles

may help to reassure them. (Suggestions for more items here are welcome.)

� A function that has been transferred to Utils will not be changed without the approval of the

original author.

� The current package maintainer has every intention of continuing to maintain Utils. In the event

that this proves impossible, the GAP development team will surely �nd someone to take over.

� Function names will not be changed unless speci�cally requested byHome's author(s) or unless

they have the form HOME_FunctionName.

� In order to speed up the transfer process, only functions from one package will be in transition

at any given time. Hopefully a week or two will suf�ce for most packages.

� Any package author who transfers a function to Utils will become an author of Utils. (In truth,

Utils does not have authors, just a large number of contributors.)

The process for transferring utility functions from Home to Utils is described in Chapter 7.

Chapter 2

Lists, Sets and Strings

2.1 Functions for lists

2.1.1 DifferencesList

. DifferencesList(L) (function)

This function has been transferred from package ResClasses.

It takes a list L of length n and outputs the list of length n� 1 containing all the differences

L[i]�L[i�1].

Example

gap> List([1..12], n->n^3);

[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728]

gap> DifferencesList(last);

[7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397]

gap> DifferencesList(last);

[12, 18, 24, 30, 36, 42, 48, 54, 60, 66]

gap> DifferencesList(last);

[6, 6, 6, 6, 6, 6, 6, 6, 6]

2.1.2 QuotientsList

. QuotientsList(L) (function)

. FloatQuotientsList(L) (function)

These functions have been transferred from package ResClasses.

They take a list L of length n and output the quotients L[i]=L[i�1] of consecutive entries in L. An
error is returned if an entry is zero.

Example

gap> List([0..10], n -> Factorial(n));

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

gap> QuotientsList(last);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

6

Utils 7

gap> L := [1, 3, 5, -1, -3, -5];;

gap> QuotientsList(L);

[3, 5/3, -1/5, 3, 5/3]

gap> FloatQuotientsList(L);

[3., 1.66667, -0.2, 3., 1.66667]

gap> QuotientsList([2, 1, 0, -1, -2]);

[1/2, 0, fail, 2]

gap> FloatQuotientsList([1..10]);

[2., 1.5, 1.33333, 1.25, 1.2, 1.16667, 1.14286, 1.125, 1.11111]

gap> Product(last);

10.

2.1.3 SearchCycle

. SearchCycle(L) (operation)

This function has been transferred from package RCWA.

SearchCycle is a tool to �nd likely cycles in lists. What, precisely, a cycle is, is deliberately

fuzzy here, and may possibly even change. The idea is that the beginning of the list may be anything,

following that the same pattern needs to be repeated several times in order to be recognized as a cycle.

Example

gap> L := [1..20];; L[1]:=13;;

gap> for i in [1..19] do

> if IsOddInt(L[i]) then L[i+1]:=3*L[i]+1; else L[i+1]:=L[i]/2; fi;

> od;

gap> L;

[13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4]

gap> SearchCycle(L);

[1, 4, 2]

gap> n := 1;; L := [n];;

gap> for i in [1..100] do n:=(n^2+1) mod 1093; Add(L,n); od;

gap> L;

[1, 2, 5, 26, 677, 363, 610, 481, 739, 715, 795, 272, 754, 157, 604, 848,

1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271,

211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521,

378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272,

754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604,

848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004,

271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004]

gap> C := SearchCycle(L);

[157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754]

gap> P := Positions(L, 157);

[14, 26, 38, 50, 62, 74, 86, 98]

gap> Length(C); DifferencesList(P);

12

[12, 12, 12, 12, 12, 12, 12]

Utils 8

2.1.4 RandomCombination

. RandomCombination(S, k) (operation)

This function has been transferred from package ResClasses.

It returns a random unordered k-tuple of distinct elements of a set S.

Example

gap> ## "6 aus 49" is a common lottery in Germany

gap> RandomCombination([1..49], 6);

[2, 16, 24, 26, 37, 47]

2.1.5 PrintListOneItemPerLine

. PrintListOneItemPerLine(L) (operation)

This function has been transferred from package XMod.

Printing lists vertically, rather than horizontally, may be useful when the entries are lengthy.

Example

gap> L := KnownPropertiesOfObject(GeneratorsOfGroup(SymmetricGroup(5)));;

gap> PrintListOneItemPerLine(L);

[IsFinite,

IsSmallList,

IsGeneratorsOfMagmaWithInverses,

IsGeneratorsOfSemigroup,

IsSubsetLocallyFiniteGroup

]

2.1.6 PositionsNonzero

. PositionsNonzero(L) (operation)

This function is being transferred from package QPA.

It returns the list of positions of all nonzero elements in a list by applying the operation

PositionsProperty using the property not(IsZero).

Example

gap> PositionsNonzero([0,1,0,2,0];

[2, 4]

gap> PositionsNonzero([0,0,0]);

[]

gap> PositionsNonzero([-5..5]);

[1, 2, 3, 4, 5, 7, 8, 9, 10, 11]

Utils 9

2.1.7 NullList

. NullList(n, F) (operation)

This function is being transferred from package QPA.

A call of NullList(n,F) returns a list of length n whose entries are the zero in the �eld F . (Once

the transfer is complete, the restriction that F should be a �eld will be relaxed.)

Example

gap> NullList(5, Rationals);

[0, 0, 0, 0, 0]

2.2 Distinct and Common Representatives

2.2.1 DistinctRepresentatives

. DistinctRepresentatives(list) (operation)

. CommonRepresentatives(list) (operation)

. CommonTransversal(grp, subgrp) (operation)

. IsCommonTransversal(grp, subgrp, list) (operation)

These functions have been transferred from package XMod.

They deal with lists of subsets of [1 : : :n] and construct systems of distinct and common represen-

tatives using simple, non-recursive, combinatorial algorithms.

When L is a set of n subsets of [1 : : :n] and the Hall condition is satis�ed (the union of any k

subsets has at least k elements), a set of DistinctRepresentatives exists.

When J;K are both lists of n sets, the function CommonRepresentatives returns two lists: the set

of representatives, and a permutation of the subsets of the second list. It may also be used to provide a

common transversal for sets of left and right cosets of a subgroup H of a group G, although a greedy

algorithm is usually quicker.

Example

gap> J := [[1,2,3], [3,4], [3,4], [1,2,4]];;

gap> DistinctRepresentatives(J);

[1, 3, 4, 2]

gap> K := [[3,4], [1,2], [2,3], [2,3,4]];;

gap> CommonRepresentatives(J, K);

[[3, 3, 3, 1], [1, 3, 4, 2]]

gap> d16 := DihedralGroup(IsPermGroup, 16);

Group([(1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6)])

gap> SetName(d16, "d16");

gap> c4 := Subgroup(d16, [d16.1^2]);

Group([(1,3,5,7)(2,4,6,8)])

gap> SetName(c4, "c4");

gap> RightCosets(d16, c4);

[RightCoset(c4,()), RightCoset(c4,(2,8)(3,7)(4,6)), RightCoset(c4,(1,8,7,6,5,

4,3,2)), RightCoset(c4,(1,8)(2,7)(3,6)(4,5))]

gap> trans := CommonTransversal(d16, c4);

Utils 10

[(), (2,8)(3,7)(4,6), (1,2,3,4,5,6,7,8), (1,2)(3,8)(4,7)(5,6)]

gap> IsCommonTransversal(d16, c4, trans);

true

2.3 Functions for strings

2.3.1 BlankFreeString

. BlankFreeString(obj) (function)

This function has been transferred from package ResClasses.

The result of BlankFreeString(obj); is a composite of the functions String(obj) and

RemoveCharacters(obj, " ");.

Example

gap> gens := GeneratorsOfGroup(DihedralGroup(12));

[f1, f2, f3]

gap> String(gens);

"[f1, f2, f3]"

gap> BlankFreeString(gens);

"[f1,f2,f3]"

2.3.2 StringDotSuf�x

. StringDotSuffix(str, suf) (operation)

This function has been transferred from package AutoDoc, where it was originally named

AUTODOC_GetSuffix.

When StringDotSuffix is given a string containing a "." it return its extension, i.e. the bit after

the last ".".

Example

gap> StringDotSuffix("file.ext");

"ext"

gap> StringDotSuffix("file.ext.bak");

"bak"

gap> StringDotSuffix("file.");

""

gap> StringDotSuffix("Hello");

fail

Chapter 3

Number-theoretic functions

3.1 Functions for integers

3.1.1 AllSmoothIntegers

. AllSmoothIntegers(maxp, maxn) (function)

. AllSmoothIntegers(maxp, L) (function)

This function has been transferred from package RCWA.

The function AllSmoothIntegers(maxp,maxn) returns the list of all positive integers less than

or equal to maxn whose prime factors are all in the list L= fp j p6 maxp; p primeg.
In the alternative form, when L is a list of primes, the function returns the list of all positive

integers whose prime factors lie in L.

Example

gap> AllSmoothIntegers(3, 1000);

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96,

108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576,

648, 729, 768, 864, 972]

gap> AllSmoothIntegers([5,11,17], 1000);

[1, 5, 11, 17, 25, 55, 85, 121, 125, 187, 275, 289, 425, 605, 625, 935]

gap> Length(last);

16

gap> List([3..20], n -> Length(AllSmoothIntegers([5,11,17], 10^n)));

[16, 29, 50, 78, 114, 155, 212, 282, 359, 452, 565, 691, 831, 992, 1173,

1374, 1595, 1843]

3.1.2 AllProducts

. AllProducts(L, k) (function)

This function has been transferred from package RCWA.

The command AllProducts(L,k) returns the list of all products of k entries of the list L . Note

that every ordering of the entries is used so that, in the commuting case, there are bound to be repeti-

tions.

11

Utils 12

Example

gap> AllProducts([1..4],3);

[1, 2, 3, 4, 2, 4, 6, 8, 3, 6, 9, 12, 4, 8, 12, 16, 2, 4, 6, 8, 4, 8, 12,

16, 6, 12, 18, 24, 8, 16, 24, 32, 3, 6, 9, 12, 6, 12, 18, 24, 9, 18, 27,

36, 12, 24, 36, 48, 4, 8, 12, 16, 8, 16, 24, 32, 12, 24, 36, 48, 16, 32,

48, 64]

gap> Set(last);

[1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 64]

gap> AllProducts([(1,2,3),(2,3,4)], 2);

[(2,4,3), (1,2)(3,4), (1,3)(2,4), (1,3,2)]

3.1.3 RestrictedPartitionsWithoutRepetitions

. RestrictedPartitionsWithoutRepetitions(n, S) (function)

This function has been transferred from package RCWA.

For a positive integer n and a set of positive integers S , this function returns the list of partitions

of n into distinct elements of S . Unlike RestrictedPartitions, no repetitions are allowed.

Example

gap> RestrictedPartitions(20, [4..10]);

[[4, 4, 4, 4, 4], [5, 5, 5, 5], [6, 5, 5, 4], [6, 6, 4, 4],

[7, 5, 4, 4], [7, 7, 6], [8, 4, 4, 4], [8, 6, 6], [8, 7, 5],

[8, 8, 4], [9, 6, 5], [9, 7, 4], [10, 5, 5], [10, 6, 4],

[10, 10]]

gap> RestrictedPartitionsWithoutRepetitions(20, [4..10]);

[[10, 6, 4], [9, 7, 4], [9, 6, 5], [8, 7, 5]]

gap> RestrictedPartitionsWithoutRepetitions(10^2, List([1..10], n->n^2));

[[100], [64, 36], [49, 25, 16, 9, 1]]

3.1.4 ExponentOfPrime

. ExponentOfPrime(n, p) (function)

This function has been transferred from package RCWA.

ExponentOfPrime(n,p) returns the exponent of the prime p in the prime factorization of n .

Example

gap> ExponentOfPrime(13577531, 11);

3

gap> List([1..40], n -> ExponentOfPrime(3^n-1, 2));

[1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1,

3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 5]

gap> List([1..40], n -> ExponentOfPrime(n^2-1, 2));

[infinity, 0, 3, 0, 3, 0, 4, 0, 4, 0, 3, 0, 3, 0, 5, 0, 5, 0, 3, 0, 3, 0, 4,

0, 4, 0, 3, 0, 3, 0, 6, 0, 6, 0, 3, 0, 3, 0, 4, 0]

Utils 13

3.1.5 NextProbablyPrimeInt

. NextProbablyPrimeInt(n) (function)

This function has been transferred from package RCWA.

The function NextProbablyPrimeInt(n) does the same as NextPrimeInt(n) except that

for reasons of performance it tests numbers only for IsProbablyPrimeInt(n) instead of

IsPrimeInt(n). For large n , this function is much faster than NextPrimeInt(n)

Example

gap> n := 2^251;

3618502788666131106986593281521497120414687020801267626233049500247285301248

gap> time;

0

gap> NextProbablyPrimeInt(n);

3618502788666131106986593281521497120414687020801267626233049500247285301313

gap> time;

1

gap> NextPrimeInt(n);

3618502788666131106986593281521497120414687020801267626233049500247285301313

gap> time;

12346

3.1.6 PrimeNumbersIterator

. PrimeNumbersIterator([chunksize]) (function)

This function has been transferred from package RCWA.

This function returns an iterator which runs over the prime numbers n ascending order; it takes an

optional argument chunksize which speci�es the length of the interval which is sieved in one go (the

default is 107), and which can be used to balance runtime vs. memory consumption. It is assumed

that chunksize is larger than any gap between two consecutive primes within the range one intends

to run the iterator over.

Example

gap> iter := PrimeNumbersIterator();;

gap> for i in [1..100] do p := NextIterator(iter); od;

gap> p;

541

gap> sum := 0;;

gap> ## "prime number race" 1 vs. 3 mod 4

gap> for p in PrimeNumbersIterator() do

> if p <> 2 then sum := sum + E(4)^(p-1); fi;

> if sum > 0 then break; fi;

> od;

gap> p;

26861

Chapter 4

Groups and homomorphisms

4.1 Functions for groups

4.1.1 Comm

. Comm(L) (operation)

This method has been transferred from package ResClasses.

It provides a method for Comm when the argument is a list (enclosed in square brackets), and calls

the function LeftNormedComm.

Example

gap> Comm([(1,2), (2,3)]);

(1,2,3)

gap> Comm([(1,2),(2,3),(3,4),(4,5),(5,6)]);

(1,5,6)

gap> Comm(Comm(Comm(Comm((1,2),(2,3)),(3,4)),(4,5)),(5,6)); ## the same

(1,5,6)

4.1.2 IsCommuting

. IsCommuting(a, b) (operation)

This function has been transferred from package ResClasses.

It tests whether two elements in a group commute.

Example

gap> D12 := DihedralGroup(12);

<pc group of size 12 with 3 generators>

gap> SetName(D12, "D12");

gap> a := D12.1;; b := D12.2;;

gap> IsCommuting(a, b);

false

14

Utils 15

4.1.3 ListOfPowers

. ListOfPowers(g, exp) (operation)

This function has been transferred from package RCWA.

The operation ListOfPowers(g,exp) returns the list [g;g2; :::;gexp] of powers of the element g.

Example

gap> ListOfPowers(2, 20);

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,

32768, 65536, 131072, 262144, 524288, 1048576]

gap> ListOfPowers((1,2,3)(4,5), 12);

[(1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), (),

(1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), ()]

gap> ListOfPowers(D12.2, 6);

[f2, f3, f2*f3, f3^2, f2*f3^2, <identity> of ...]

4.1.4 GeneratorsAndInverses

. GeneratorsAndInverses(G) (operation)

This function has been transferred from package RCWA.

This operation returns a list containing the generators of G followed by the inverses of these

generators.

Example

gap> GeneratorsAndInverses(D12);

[f1, f2, f3, f1, f2*f3^2, f3^2]

gap> GeneratorsAndInverses(SymmetricGroup(5));

[(1,2,3,4,5), (1,2), (1,5,4,3,2), (1,2)]

4.1.5 UpperFittingSeries

. UpperFittingSeries(G) (attribute)

. LowerFittingSeries(G) (attribute)

. FittingLength(G) (attribute)

These three functions have been transferred from package ResClasses.

The upper and lower Fitting series and the Fitting length of a solvable group are described here:

https://en.wikipedia.org/wiki/Fitting_length.

Example

gap> UpperFittingSeries(D12); LowerFittingSeries(D12);

[Group([]), Group([f3, f2*f3]), Group([f3, f2*f3, f1])]

[D12, Group([f3]), Group([])]

gap> FittingLength(D12);

2

https://en.wikipedia.org/wiki/Fitting_length

Utils 16

gap> S4 := SymmetricGroup(4);;

gap> UpperFittingSeries(S4);

[Group(()), Group([(1,2)(3,4), (1,4)(2,3)]), Group([(1,2)(3,4), (1,4)

(2,3), (2,4,3)]), Group([(3,4), (2,3,4), (1,2)(3,4)])]

gap> List(last, StructureDescription);

["1", "C2 x C2", "A4", "S4"]

gap> LowerFittingSeries(S4);

[Sym([1 .. 4]), Alt([1 .. 4]), Group([(1,4)(2,3), (1,3)

(2,4)]), Group(())]

gap> List(last, StructureDescription);

["S4", "A4", "C2 x C2", "1"]

gap> FittingLength(S4);

3

4.2 Functions for group homomorphisms

4.2.1 EpimorphismByGenerators

. EpimorphismByGenerators(G, H) (operation)

This function has been transferred from package RCWA.

It constructs a group homomorphism which maps the generators of G to those of H. Its intended

use is when G is a free group, and a warning is printed when this is not the case. Note that anything

may happen if the resulting map is not a homomorphism!

Example

gap> G := Group((1,2,3), (3,4,5), (5,6,7), (7,8,9));;

gap> phi := EpimorphismByGenerators(FreeGroup("a","b","c","d"), G);

[a, b, c, d] -> [(1,2,3), (3,4,5), (5,6,7), (7,8,9)]

gap> PreImagesRepresentative(phi, (1,2,3,4,5,6,7,8,9));

d*c*b*a

gap> a := G.1;; b := G.2;; c := G.3;; d := G.4;;

gap> d*c*b*a;

(1,2,3,4,5,6,7,8,9)

gap> ## note that it is easy to produce nonsense:

gap> epi := EpimorphismByGenerators(Group((1,2,3)), Group((8,9)));

Warning: calling GroupHomomorphismByImagesNC without checks

[(1,2,3)] -> [(8,9)]

gap> IsGroupHomomorphism(epi);

true

gap> Image(epi, (1,2,3));

()

gap> Image(epi, (1,3,2));

(8,9)

Chapter 5

Records

5.1 Functions for records

5.1.1 SetIfMissing

. SetIfMissing(rec, name, val) (function)

This function has been transferred from package AutoDoc, where it was called

AUTODOC_WriteOnce. It writes into a record provided the position is not yet bound.

Example

gap> r := rec(a := 1, b := 2);;

gap> SetIfMissing(r, "c", 3);

gap> RecNames(r);

["b", "c", "a"]

gap> SetIfMissing(r, "c", 4);

gap> r;

rec(a := 1, b := 2, c := 3)

5.1.2 AssignGlobals

. AssignGlobals(rec) (function)

This function has been transferred from package RCWA.

It assigns the record components of rec to global variables with the same names.

Example

gap> AssignGlobals(r);

The following global variables have been assigned:

["a", "b", "c"]

gap> [a,b,c];

[1, 2, 3]

17

Chapter 6

Various other functions

6.1 Operations on folders

6.1.1 FindMatchingFiles

. FindMatchingFiles(pkg, dirs, extns) (function)

. CreateDirIfMissing(str) (function)

These functions have been transferred from package AutoDoc where they were named

AutoDoc_FindMatchingFiles and AutoDoc_CreateDirIfMissing.

FindMatchingFiles scans the given (by name) subdirectories of a package directory for �les

with one of the given extensions, and returns the corresponding �lenames, as paths relative to the

package directory.

CreateDirIfMissing checks whether the given directory exists and, if not, attempts to create it.

In either case true is returned.

Warning: this function relies on the undocumented library function CreateDir, so use it with

caution.

Example

gap> FindMatchingFiles("utils", ["/", "tst"], ["g", "txt"]);

["/LICENSE.txt", "/PackageInfo.g", "/init.g", "/makedoc.g", "/read.g",

"tst/testall.g"]

gap> CreateDirIfMissing("/Applications/gap/temp/");

true

6.2 File operations

6.2.1 Log2HTML

. Log2HTML(filename) (function)

This function has been transferred from package RCWA.

This function converts the GAP log�le filename to HTML. The extension of the input �le must

be *.log. The name of the output �le is the same as the one of the input �le except that the extension

18

Utils 19

*.log is replaced by *.html. There is a sample CSS �le in utils/doc/gaplog.css, which you can

adjust to your taste.

Example

gap> LogTo("mar2.log");

gap> FindMatchingFiles("utils", [""], ["g"]);

["/PackageInfo.g", "/init.g", "/makedoc.g", "/read.g"]

gap> LogTo();

gap> Log2HTML("mar2.log");

gap> FindMatchingFiles("utils", [""], ["html", "log"]);

["/mar2.html", "/mar2.log"]

6.3 LATEX strings

6.3.1 IntOrOn�nityToLaTeX

. IntOrOnfinityToLaTeX(n) (function)

This function has been transferred from package ResClasses.

IntOrInfinityToLaTeX(n) returns the LATEX string for n .

Example

gap> IntOrInfinityToLaTeX(10^3);

"1000"

gap> IntOrInfinityToLaTeX(infinity);

"\\infty"

6.3.2 LaTeXStringFactorsInt

. LaTeXStringFactorsInt(n) (function)

This function has been transferred from package RCWA.

It returns the prime factorization of the integer n as a string in LATEX format.

Example

gap> LaTeXStringFactorsInt(Factorial(12));

"2^{10} \\cdot 3^5 \\cdot 5^2 \\cdot 7 \\cdot 11"

6.4 Applicable methods

6.4.1 PrintApplicableMethod

. PrintApplicableMethod(arg) (function)

Utils 20

This function combines calls to ApplicableMethod, FilenameFunc, StartlineFunc and

EndlineFunc and prints the location of the �le containing the method found, and a listing of that

method. In its simplest form it is called as PrintApplicableMethod(f,L) for a function f and a list

of parameters L. Alternatively, it is called as PrintApplicableMethod(f,L,0,n) and then prints

the method returned by ApplicableMethod(f,L,0,n).

Example

gap> PrintApplicableMethod(IsCyclic, [Group((1,2,3),(4,5))]);

this method is contained in lines [30,36] of file:

/Applications/gap/gapdev/lib/grp.gi

function (G)

if Length(GeneratorsOfGroup(G)) = 1 then

return true;

else

return TRY_NEXT_METHOD;

fi;

return;

end

gap> PrintApplicableMethod(IsCyclic, [Group((1,2,3),(4,5))], 0, 2);

this method is contained in lines [41,63] of file:

/Applications/gap/gapdev/lib/grp.gi

function (G)

if HasGeneratorsOfGroup(G) and Length(GeneratorsOfGroup(G)) = 1

then

SetMinimalGeneratingSet(G, GeneratorsOfGroup(G));

return true;

elif not IsCommutative(G) then

return false;

elif IsFinite(G) then

return ForAll(Set(FactorsInt(Size(G))), function (p)

return

Index(G,

SubgroupNC(G,

List(GeneratorsOfGroup(G), function (g)

return g ^ p;

end))) = p;

end);

else

return AbelianInvariants(G) = [0];

fi;

return;

end

6.5 Conversion to MAGMA string

6.5.1 ConvertToMagmaInputString

. ConvertToMagmaInputString(arg) (function)

Utils 21

The function ConvertToMagmaInputString(obj [, str]) attempts to output a string s

which can be read into MAGMA [BCP97] so as to produce the same group in that computer al-

gebra system. In the second form the user speci�es the name of the resulting object, so that

the output string has the form "str := ...". When obj is a permutation group, the operation

PermGroupToMagmaFormat(obj) is called. This function has been taken from other.gi in the

main library where it was called MagmaInputString. When obj is a pc-group, the operation

PcGroupToMagmaFormat(obj) is called. This function was private code of Max Horn. When obj is

a matrix group over a �nite �eld, the operation MatrixGroupToMagmaFormat(obj) is called. This

function is a modi�cation of private code of Frank Lübeck.

Hopefully code for other types of group will be added in due course.

These functions should be considered experimental, and more testing is desirable.

Example

gap> ConvertToMagmaInputString(Group((1,2,3,4,5), (3,4,5)));

"PermutationGroup<5|(1,2,3,4,5),\n(3,4,5)>;\n"

gap> ConvertToMagmaInputString(Group((1,2,3,4,5)), "c5");

"c5:=PermutationGroup<5|(1,2,3,4,5)>;\n"

gap> ConvertToMagmaInputString(SmallGroup(24, 12));

"PolycyclicGroup< f1,f2,f3,f4 |\nf1^2,\nf2^3,\nf3^2,\nf4^2,\nf2^f1 = f2^2,\nf3\

^f1 = f4,\nf3^f2 = f4,\nf4^f1 = f3,\nf4^f2 = f3*f4\n>;\n"

gap> ConvertToMagmaInputString(CyclicGroup(IsPcGroup, 7), "c7");

"c7:=PolycyclicGroup< f1 |\nf1^7\n>;\n"

gap> M := GL(2,5);; Size(M);

480

gap> s1 := ConvertToMagmaInputString(M);

"F := GF(5);\nP := GL(2,F);\ngens := [\nP![2,0,0,1],\nP![4,1,4,0]\n];\nsub<P |\

gens>;\n"

gap> Print(s1);

F := GF(5);

P := GL(2,F);

gens := [

P![2,0,0,1],

P![4,1,4,0]

];

sub<P | gens>;

gap> n1 := [[Z(9)^0, Z(9)^0], [Z(9)^0, Z(9)]];;

gap> n2 := [[Z(9)^0, Z(9)^3], [Z(9)^4, Z(9)^2]];;

gap> N := Group(n1, n2);; Size(N);

5760

gap> s2 := ConvertToMagmaInputString(N, "gpN");;

gap> Print(s2);

F := GF(3^2);

P := GL(2,F);

w := PrimitiveElement(F);

gens := [

P![1, 1, 1,w^1],

P![1,w^3, 2,w^2]

];

gpN := sub<P | gens>;

Chapter 7

The transfer procedure

We consider here the process for transferring utility functions from a package Home to Utils which

has to avoid the potential problem of duplicate declarations of a function causing loading problems in

GAP.

If the functions in Home all have names of the form HOME_FunctionName then, in Utils, these

functions are likely to be renamed as FunctionName or something similar. In this case the problem

of duplicate declarations does not arise. This is what has happened with transfers from the AutoDoc

package.

The case where the function names are unchanged is more complicated. Initially we tried out

a process which allowed repeated declarations and installations of the functions being transferred.

This involved additions to the main library �les global.g and oper.g. Since there were misgivings

about interfering in this way with basic operations such as BIND_GLOBAL, a simpler (but slightly less

convenient) process has been adopted.

Using this alternative procedure, the following steps will be followed when making transfers from

Home to Utils.

1. (Home:) Offer functions for inclusion. This may be simply done by emailing a list of func-

tions. More usefully, email the declaration, implementation, test and documentation �les, e.g.:

home.gd, home.gi, home.tst and home.xml. (All active authors should be involved.)

2. (Home:) Declare that M.N is the last version ofHome to contain these functions, so that M.N+1

(or similar) will be the �rst version of Home to have all these functions removed, and to specify

Utils as a required package.

3. (Utils:) Add strings "home" and "m.n" to the list UtilsPackageVersions in the �le

utils/lib/start.gd.
Example

UtilsPackageVersions :=

["autodoc", "2016.01.31",

"resclasses", "4.2.5",

"home", "m.n",

..., ...

];

22

Utils 23

While the transfers are being made, it is essential that any new versions of Home should be

tested with the latest version of Utils before they are released, so as to avoid loading failures.

4. (Utils:) Include the function declaration and implementation sections in suitable �les, enclosed

within a conditional clause of the form:
Example

if OKtoReadFromUtils("Home") then

.

<the code>

.

fi;

The function OKtoReadFromUtils returns true only if there is an installed version of Home

and if this version is greater than M.N. So, at this stage, the copied code will not be read, and

the transferred functions can only be called if Home has been installed.

5. (Utils:) Add the test and documentation material to the appropriate �les. The copied code can

be tested by temporarily moving Home away from GAP's package directory.

6. (Utils:) Release a new version of Utils containing all the transferred material.

7. (Home:) Edit out the declarations and implementations of all the transferred functions, and

remove references to them in the manual and tests. Possibly add a note to the manual that

these functions have been transferred. Add Utils to the list of Home's required packages in

PackageInfo.g. Release a new version of Home.

8. (Utils:) In due course, when the new version(s) of Home are well established, it may be

safe to remove the conditional clauses mentioned in item 4 above. The entry for Home in

UtilsPackageLists may then be removed.

Finally, a note on the procedure for testing these functions. As long as a function being transferred

still exists in the Home package, the code will not be read from Utils. So, when the tests are run, it is

necessary to LoadPackage("home") before the function is called. The �le utils/tst/testall.g

makes sure that all the necessary packages are loaded before the individual tests are called.

References

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. {I}. The

user language, 1997. Computational algebra and number theory (London, 1993)}

http://dx.doi.org/10.1006/jsco.1996.0125. 21

[GH16] S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code

(Version 2016.11.26), 2016. GAP package, https://github.com/gap-packages/

AutoDoc. 4

[Hor14] M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within GAP

packages (Version 0.1), 2014. GAP package, https://github.com/fingolfin/

GitHubPagesForGAP/. 2

[Koh16a] S. Kohl. RCWA - Residue-Class-Wise Af�ne Groups (Version 4.4.1), 2016. GAP package,

http://www.gap-system.org/DevelopersPages/StefanKohl/rcwa.html. 4

[Koh16b] S. Kohl. ResClasses - Set-Theoretic Computations with Residue Classes (Version

4.5.0), 2016. GAP package, http://www.gap-system.org/DevelopersPages/

StefanKohl/resclasses.html. 4

[LN12] F. Lübeck and M. Neunhöffer. GAPDoc (Version 1.5.1). RWTH Aachen,

2012. GAP package, http://www.math.rwth-aachen.de/~Frank.Luebeck/

GAPDoc/index.html. 2

[Qt16] The QPA-team. QPA - Quivers and Path Algebras (Version 1.25), 2016. GAP package,

https://www.math.ntnu.no/~oyvinso/QPA/. 4

[WAOU16] C. Wensley, M. Alp, A. Odabas, and E. O. Uslu. XMod - Crossed Modules and

Cat1-groups in GAP (Version 2.58), 2016. GAP package, https://github.com/

gap-packages/xmod. 4

24

http://dx.doi.org/10.1006/jsco.1996.0125
https://github.com/gap-packages/AutoDoc
https://github.com/gap-packages/AutoDoc
https://github.com/fingolfin/GitHubPagesForGAP/
https://github.com/fingolfin/GitHubPagesForGAP/
http://www.gap-system.org/DevelopersPages/StefanKohl/rcwa.html
http://www.gap-system.org/DevelopersPages/StefanKohl/resclasses.html
http://www.gap-system.org/DevelopersPages/StefanKohl/resclasses.html
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html
https://www.math.ntnu.no/~oyvinso/QPA/
https://github.com/gap-packages/xmod
https://github.com/gap-packages/xmod

Index

Utils, 4

AllProducts, 11

AllSmoothIntegers, 11

AssignGlobals, 17

BlankFreeString, 10

Comm, 14

CommonRepresentatives, 9

CommonTransversal, 9

ConvertToMagmaInputString, 20

CreateDirIfMissing, 18

DifferencesList, 6

distinct and common representatives, 9

DistinctRepresentatives, 9

EpimorphismByGenerators, 16

ExponentOfPrime, 12

FindMatchingFiles, 18

Fitting series, 15

FittingLength, 15

FloatQuotientsList, 6

GeneratorsAndInverses, 15

GitHub repository, 4

IntOrOnfinityToLaTeX, 19

IsCommonTransversal, 9

IsCommuting, 14

LaTeXStringFactorsInt, 19

License, 2

ListOfPowers, 15

Log2HTML, 18

LowerFittingSeries, 15

NextProbablyPrimeInt, 13

NullList, 9

OKtoReadFromUtils, 23

PositionsNonzero, 8

PrimeNumbersIterator, 13

PrintApplicableMethod, 19

PrintListOneItemPerLine, 8

QuotientsList, 6

RandomCombination, 8

RestrictedPartitionsWithout-

Repetitions, 12

SearchCycle, 7

SetIfMissing, 17

smooth integer, 11

StringDotSuffix, 10

UpperFittingSeries, 15

25

	Introduction
	Information for package authors

	Lists, Sets and Strings
	Functions for lists
	Distinct and Common Representatives
	Functions for strings

	Number-theoretic functions
	Functions for integers

	Groups and homomorphisms
	Functions for groups
	Functions for group homomorphisms

	Records
	Functions for records

	Various other functions
	Operations on folders
	File operations
	LaTeX strings
	Applicable methods
	Conversion to MAGMA string

	The transfer procedure
	References

