If
M or
N is an ideal or ring, it is regarded as a module in the evident way.
i1 : R = QQ[x,y]/(y^2-x^3);
|
i2 : M = image matrix{{x,y}}
o2 = image | x y |
1
o2 : R-module, submodule of R
|
i3 : H = Hom(M,M)
o3 = image {-1} | x y |
{-1} | y x2 |
2
o3 : R-module, submodule of R
|
Specific homomorphisms may be obtained using
homomorphism.
i4 : f0 = homomorphism H_{0}
o4 = {1} | 1 0 |
{1} | 0 1 |
o4 : Matrix
|
i5 : f1 = homomorphism H_{1}
o5 = {1} | 0 x |
{1} | 1 0 |
o5 : Matrix
|
In this example, f0 is the identity map, and f1 maps x to y and y to x^2.