next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Schubert2 :: PP

PP -- make a projective space

Synopsis

Description

i1 : X = PP^4

o1 = X

o1 : a flag bundle with subquotient ranks {1, 4}
i2 : X.Base

o2 = point

o2 : an abstract variety of dimension 0
i3 : dim X

o3 = 4

The projective space produced adheres to the older, "Fulton-style" notation, with a tautological subbundle of rank 1. For the opposite, "Grothendieck-style" notation, see PP'.

i4 : bundles X/rank

o4 = (1, 4)

o4 : Sequence

For the programmer

The object PP is a scripted functor.