The function add computes the reduced ideal of multiplication of two integral ideals
i1 : R=pR(GF 13,{x,y},{2,3}) o1 = R o1 : PolynomialRing |
i2 : I=qR(R,y^2-x^3-7*x) o2 = I o2 : QuotientRing |
i3 : J=ideal(x,y) o3 = ideal (x, y) o3 : Ideal of I |
i4 : K=ideal(x-2,y-3) o4 = ideal (x - 2, y - 3) o4 : Ideal of I |
i5 : add(J,K) o5 = ideal (x + 3, y + 2) o5 : Ideal of I |
i6 : L=J*K 2 3 o6 = ideal (x - 2x, x*y - 3x, x*y - 2y, x - 3y - 6x) o6 : Ideal of I |
i7 : reduced(L) o7 = ideal (x + 3, y + 2) o7 : Ideal of I |