![]() |
NFFT
3.3.1
|
00001 /* 00002 * Copyright (c) 2002, 2016 Jens Keiner, Stefan Kunis, Daniel Potts 00003 * 00004 * This program is free software; you can redistribute it and/or modify it under 00005 * the terms of the GNU General Public License as published by the Free Software 00006 * Foundation; either version 2 of the License, or (at your option) any later 00007 * version. 00008 * 00009 * This program is distributed in the hope that it will be useful, but WITHOUT 00010 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 00011 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 00012 * details. 00013 * 00014 * You should have received a copy of the GNU General Public License along with 00015 * this program; if not, write to the Free Software Foundation, Inc., 51 00016 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 00017 */ 00018 #include <stdlib.h> 00019 #include <math.h> 00020 #include <limits.h> 00021 #include <complex.h> 00022 00023 #include "nfft3.h" 00024 00025 #ifndef MAX 00026 #define MAX(a,b) (((a)>(b))?(a):(b)) 00027 #endif 00028 00035 static void reconstruct(char* filename,int N,int M,int iteration , int weight) 00036 { 00037 int j,k,l; 00038 double time,min_time,max_time,min_inh,max_inh; 00039 double t0, t1; 00040 double t,real,imag; 00041 double w,epsilon=0.0000003; /* epsilon is a the break criterium for 00042 the iteration */; 00043 mri_inh_2d1d_plan my_plan; 00044 solver_plan_complex my_iplan; 00045 FILE* fp,*fw,*fout_real,*fout_imag,*finh,*ftime; 00046 int my_N[3],my_n[3]; 00047 int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT| 00048 MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE; 00049 unsigned infft_flags = CGNR | PRECOMPUTE_DAMP; 00050 00051 double Ts; 00052 double W,T; 00053 int N3; 00054 int m=2; 00055 double sigma = 1.25; 00056 00057 ftime=fopen("readout_time.dat","r"); 00058 finh=fopen("inh.dat","r"); 00059 00060 min_time=INT_MAX; max_time=INT_MIN; 00061 for(j=0;j<M;j++) 00062 { 00063 fscanf(ftime,"%le ",&time); 00064 if(time<min_time) 00065 min_time = time; 00066 if(time>max_time) 00067 max_time = time; 00068 } 00069 00070 fclose(ftime); 00071 00072 Ts=(min_time+max_time)/2.0; 00073 00074 00075 min_inh=INT_MAX; max_inh=INT_MIN; 00076 for(j=0;j<N*N;j++) 00077 { 00078 fscanf(finh,"%le ",&w); 00079 if(w<min_inh) 00080 min_inh = w; 00081 if(w>max_inh) 00082 max_inh = w; 00083 } 00084 fclose(finh); 00085 00086 N3=ceil((MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+(m)/(2*sigma))*4*sigma); 00087 /* N3 has to be even */ 00088 if(N3%2!=0) 00089 N3++; 00090 00091 T=((max_time-min_time)/2.0)/(0.5-((double) (m))/N3); 00092 W=N3/T; 00093 00094 my_N[0]=N; my_n[0]=ceil(N*sigma); 00095 my_N[1]=N; my_n[1]=ceil(N*sigma); 00096 my_N[2]=N3; my_n[2]=N3; 00097 00098 /* initialise nfft */ 00099 mri_inh_2d1d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags, 00100 FFTW_MEASURE| FFTW_DESTROY_INPUT); 00101 00102 00103 /* precompute lin psi if set */ 00104 if(my_plan.plan.flags & PRE_LIN_PSI) 00105 nfft_precompute_lin_psi(&my_plan.plan); 00106 00107 if (weight) 00108 infft_flags = infft_flags | PRECOMPUTE_WEIGHT; 00109 00110 /* initialise my_iplan, advanced */ 00111 solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags ); 00112 00113 /* get the weights */ 00114 if(my_iplan.flags & PRECOMPUTE_WEIGHT) 00115 { 00116 fw=fopen("weights.dat","r"); 00117 for(j=0;j<my_plan.M_total;j++) 00118 { 00119 fscanf(fw,"%le ",&my_iplan.w[j]); 00120 } 00121 fclose(fw); 00122 } 00123 00124 /* get the damping factors */ 00125 if(my_iplan.flags & PRECOMPUTE_DAMP) 00126 { 00127 for(j=0;j<N;j++){ 00128 for(k=0;k<N;k++) { 00129 int j2= j-N/2; 00130 int k2= k-N/2; 00131 double r=sqrt(j2*j2+k2*k2); 00132 if(r>(double) N/2) 00133 my_iplan.w_hat[j*N+k]=0.0; 00134 else 00135 my_iplan.w_hat[j*N+k]=1.0; 00136 } 00137 } 00138 } 00139 00140 fp=fopen(filename,"r"); 00141 ftime=fopen("readout_time.dat","r"); 00142 00143 for(j=0;j<my_plan.M_total;j++) 00144 { 00145 fscanf(fp,"%le %le %le %le",&my_plan.plan.x[2*j+0],&my_plan.plan.x[2*j+1],&real,&imag); 00146 my_iplan.y[j]=real+ _Complex_I*imag; 00147 fscanf(ftime,"%le ",&my_plan.t[j]); 00148 00149 my_plan.t[j] = (my_plan.t[j]-Ts)/T; 00150 } 00151 fclose(fp); 00152 fclose(ftime); 00153 00154 00155 finh=fopen("inh.dat","r"); 00156 for(j=0;j<N*N;j++) 00157 { 00158 fscanf(finh,"%le ",&my_plan.w[j]); 00159 my_plan.w[j]/=W; 00160 } 00161 fclose(finh); 00162 00163 00164 if(my_plan.plan.flags & PRE_PSI) { 00165 nfft_precompute_psi(&my_plan.plan); 00166 } 00167 if(my_plan.plan.flags & PRE_FULL_PSI) { 00168 nfft_precompute_full_psi(&my_plan.plan); 00169 } 00170 00171 /* init some guess */ 00172 for(j=0;j<my_plan.N_total;j++) 00173 { 00174 my_iplan.f_hat_iter[j]=0.0; 00175 } 00176 00177 t0 = nfft_clock_gettime_seconds(); 00178 00179 /* inverse trafo */ 00180 solver_before_loop_complex(&my_iplan); 00181 for(l=0;l<iteration;l++) 00182 { 00183 /* break if dot_r_iter is smaller than epsilon*/ 00184 if(my_iplan.dot_r_iter<epsilon) 00185 break; 00186 fprintf(stderr,"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter), 00187 l+1,iteration); 00188 solver_loop_one_step_complex(&my_iplan); 00189 } 00190 00191 t1 = nfft_clock_gettime_seconds(); 00192 t = t1-t0; 00193 00194 fout_real=fopen("output_real.dat","w"); 00195 fout_imag=fopen("output_imag.dat","w"); 00196 00197 for (j=0;j<N*N;j++) { 00198 /* Verschiebung wieder herausrechnen */ 00199 my_iplan.f_hat_iter[j]*=cexp(-2.0*_Complex_I*M_PI*Ts*my_plan.w[j]*W); 00200 00201 fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[j])); 00202 fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[j])); 00203 } 00204 00205 fclose(fout_real); 00206 fclose(fout_imag); 00207 solver_finalize_complex(&my_iplan); 00208 mri_inh_2d1d_finalize(&my_plan); 00209 } 00210 00211 00212 int main(int argc, char **argv) 00213 { 00214 if (argc <= 5) { 00215 00216 printf("usage: ./reconstruct_data_inh_2d1d FILENAME N M ITER WEIGHTS\n"); 00217 return 1; 00218 } 00219 00220 reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5])); 00221 00222 return 1; 00223 } 00224 /* \} */