
Pungi Documentation
Release 4.1.16

Daniel Mach

Jun 19, 2017

CONTENTS

1 About Pungi 3
1.1 Tool overview . 3
1.2 Links . 3
1.3 Origin of name . 4

2 Contributing to Pungi 5
2.1 Set up development environment . 5
2.2 Developing . 6
2.3 Testing . 7
2.4 Documenting . 8

3 Testing Pungi 9
3.1 Test Data . 9
3.2 Unit Tests . 9
3.3 Functional Tests . 9

4 Configuration 11
4.1 Minimal Config Example . 11
4.2 Release . 11
4.3 Base Product . 12
4.4 General Settings . 13
4.5 Image Naming . 14
4.6 Signing . 15
4.7 Git URLs . 16
4.8 Createrepo Settings . 16
4.9 Package Set Settings . 17
4.10 Buildinstall Settings . 17
4.11 Gather Settings . 18
4.12 Koji Settings . 21
4.13 Extra Files Settings . 21
4.14 Productimg Settings . 23
4.15 CreateISO Settings . 23
4.16 Automatic generation of version and release . 24
4.17 Common options for Live Images, Live Media and Image Build . 24
4.18 Live Images Settings . 25
4.19 Live Media Settings . 25
4.20 Image Build Settings . 26
4.21 OSTree Settings . 28
4.22 Ostree Installer Settings . 29
4.23 OSBS Settings . 30

i

4.24 Media Checksums Settings . 31
4.25 Translate Paths Settings . 32
4.26 Miscelanous Settings . 32

5 Progress notification 35
5.1 Setting it up . 35

ii

Pungi Documentation, Release 4.1.16

Contents:

CONTENTS 1

Pungi Documentation, Release 4.1.16

2 CONTENTS

CHAPTER

ONE

ABOUT PUNGI

Pungi is a distribution compose tool.

Composes are release snapshots that contain release deliverables such as:

• installation trees

– RPMs

– repodata

– comps

• (bootable) ISOs

• kickstart trees

– anaconda images

– images for PXE boot

1.1 Tool overview

Pungi consists of multiple separate executables backed by a common library.

The main entry-point is the pungi-koji script. It loads the compose configuration and kicks off the process.
Composing itself is done in phases. Each phase is responsible for generating some artifacts on disk and updating the
compose object that is threaded through all the phases.

Pungi itself does not actually do that much. Most of the actual work is delegated to separate executables. Pungi just
makes sure that all the commands are invoked in the appropriate order and with correct arguments. It also moves the
artifacts to correct locations.

1.2 Links

• Upstream GIT: https://pagure.io/pungi/

• Issue tracker: https://pagure.io/pungi/issues

• Questions can be asked on #fedora-releng IRC channel on FreeNode

3

https://pagure.io/pungi/
https://pagure.io/pungi/issues

Pungi Documentation, Release 4.1.16

1.3 Origin of name

The name Pungi comes from the instrument used to charm snakes. Anaconda being the software Pungi was manipu-
lating, and anaconda being a snake, led to the referential naming.

The first name, which was suggested by Seth Vidal, was FIST, Fedora Installation <Something> Tool. That name was
quickly discarded and replaced with Pungi.

There was also a bit of an inside joke that when said aloud, it could sound like punji, which is a sharpened stick at the
bottom of a trap. Kind of like software. . .

4 Chapter 1. About Pungi

https://en.wikipedia.org/wiki/Punji_stick
https://en.wikipedia.org/wiki/Punji_stick

CHAPTER

TWO

CONTRIBUTING TO PUNGI

2.1 Set up development environment

In order to work on Pungi, you should install recent version of Fedora. These packages will have to installed:

• createrepo

• createrepo_c

• cvs

• genisoimage

• gettext

• git

• isomd5sum

• jigdo

• kobo

• kobo-rpmlib

• koji

• libselinux-python

• lorax

• python-jsonschema

• python-kickstart

• python-lockfile

• python-lxml

• python2-multilib

• python-productmd

• repoview

• syslinux

• yum

• yum-utils

For running unit tests, these packages are recommended as well:

• python-mock

5

Pungi Documentation, Release 4.1.16

• python-nose

• python-nose-cov

While being difficult, it is possible to work on Pungi using virtualenv. Install python-virtualenvwrapper and use
following steps. It will link system libraries into the virtual environment and install all packages preferably from PyPI
or from tarball. You will still need to install all of the non-Python packages above as they are used by calling an
executable.

$ mkvirtualenv pungienv
$ for pkg in koji rpm rpmUtils pykickstart selinux createrepo yum urlgrabber; do ln -
↪→vs "$(deactivate && python -c 'import os, '$pkg'; print os.path.dirname('$pkg'.__
↪→file__)')" "$(virtualenvwrapper_get_site_packages_dir)"; done
$ for pkg in _selinux deltarpm _deltarpm krbV sqlitecachec _sqlitecache; do ln -vs "
↪→$(deactivate && python -c 'import os, '$pkg'; print '$pkg'.__file__')" "
↪→$(virtualenvwrapper_get_site_packages_dir)"; done
$ PYCURL_SSL_LIBRARY=nss pip install pycurl --no-binary :all:
$ pip install https://github.com/release-engineering/kobo/archive/0.5.2.tar.gz
$ pip install lxml pyopenssl mock sphinx setuptools nose nose-cov productmd
↪→jsonschema requests lockfile python-multilib

Now you should be able to run all existing tests.

2.2 Developing

Currently the development workflow for Pungi is on master branch:

• Make your own fork at https://pagure.io/pungi

• Clone your fork locally (replacing $USERNAME with your own):

git clone git@pagure.io:forks/$USERNAME/pungi.git

• cd into your local clone and add the remote upstream for rebasing:

cd pungi
git remote add upstream git@pagure.io:pungi.git

Note: This workflow assumes that you never git commit directly to the master branch of your fork. This
will make more sense when we cover rebasing below.

• create a topic branch based on master:

git branch my_topic_branch master
git checkout my_topic_branch

• Make edits, changes, add new features, etc. and then make sure to pull from upstream master and rebase before
submitting a pull request:

lets just say you edited setup.py for sake of argument
git checkout my_topic_branch

make changes to setup.py
git add setup.py
git commit -s -m "added awesome feature to setup.py"

6 Chapter 2. Contributing to Pungi

https://pagure.io/pungi

Pungi Documentation, Release 4.1.16

now we rebase
git checkout master
git pull --rebase upstream master
git push origin master
git push origin --tags
git checkout my_topic_branch
git rebase master

resolve merge conflicts if any as a result of your development in
your topic branch
git push origin my_topic_branch

Note: In order to for your commit to be merged, you must sign-off on it. Use -s option when running git
commit.

• Create pull request in the pagure.io web UI

• For convenience, here is a bash shell function that can be placed in your ~/.bashrc and called such as
pullupstream pungi-4-devel that will automate a large portion of the rebase steps from above:

pullupstream () {
if [[-z "$1"]]; then

printf "Error: must specify a branch name (e.g. - master, devel)\n"
else

pullup_startbranch=$(git describe --contains --all HEAD)
git checkout $1
git pull --rebase upstream master
git push origin $1
git push origin --tags
git checkout ${pullup_startbranch}

fi
}

2.3 Testing

You must write unit tests for any new code (except for trivial changes). Any code without sufficient test coverage may
not be merged.

To run all existing tests, suggested method is to use nosetests. With additional options, it can generate code coverage.
To make sure even tests from executable files are run, don’t forget to use the --exe option.

$ make test
$ make test-cover

Running single test file
$ python tests/test_arch.py [TestCase...]

In the tests/ directory there is a shell script test_compose.sh that you can use to try and create a miniature
compose on dummy data. The actual data will be created by running make test-data in project root.

$ make test-data
$ make test-commpose

2.3. Testing 7

Pungi Documentation, Release 4.1.16

This testing compose does not actually use all phases that are available, and there is no checking that the result is
correct. It only tells you whether it crashed or not.

Note: Even when it finishes successfully, it may print errors about repoclosure on Server-Gluster.x86_64 in test
phase. This is not a bug.

2.4 Documenting

You must write documentation for any new features and functional changes. Any code without sufficient documenta-
tion may not be merged.

To generate the documentation, run make doc in project root.

8 Chapter 2. Contributing to Pungi

CHAPTER

THREE

TESTING PUNGI

3.1 Test Data

Tests require test data and not all of it is available in git. You must create test repositories before running the tests:

make test-data

Requirements: createrepo_c, rpmbuild

3.2 Unit Tests

Unit tests cover functionality of Pungi python modules. You can run all of them at once:

make test

which is shortcut to:

python2 setup.py test
python3 setup.py test

You can alternatively run individual tests:

cd tests
./<test>.py [<class>[.<test>]]

3.3 Functional Tests

Because compose is quite complex process and not everything is covered with unit tests yet, the easiest way how to
test if your changes did not break anything badly is to start a compose on a relatively small and well defined package
set:

cd tests
./test_compose.sh

9

Pungi Documentation, Release 4.1.16

10 Chapter 3. Testing Pungi

CHAPTER

FOUR

CONFIGURATION

Please read productmd documentation for terminology and other release and compose related details.

4.1 Minimal Config Example

RELEASE
release_name = "Fedora"
release_short = "Fedora"
release_version = "23"

GENERAL SETTINGS
comps_file = "comps-f23.xml"
variants_file = "variants-f23.xml"

KOJI
koji_profile = "koji"
runroot = False

PKGSET
sigkeys = [None]
pkgset_source = "koji"
pkgset_koji_tag = "f23"

CREATEREPO
createrepo_checksum = "sha256"

GATHER
gather_source = "comps"
gather_method = "deps"
greedy_method = "build"
check_deps = False

BUILDINSTALL
bootable = True
buildinstall_method = "lorax"

4.2 Release

Following mandatory options describe a release.

11

http://release-engineering.github.io/productmd/index.html
http://release-engineering.github.io/productmd/terminology.html

Pungi Documentation, Release 4.1.16

4.2.1 Options

release_name [mandatory] (str) – release name

release_short [mandatory] (str) – release short name, without spaces and special characters

release_version [mandatory] (str) – release version

release_type = “ga” (str) – release type, “ga” or “updates”

release_is_layered = False (bool) – typically False for an operating system, True otherwise

release_internal = False (bool) – whether the compose is meant for public consumption

4.2.2 Example

release_name = "Fedora"
release_short = "Fedora"
release_version = "23"
release_type = "ga"

4.3 Base Product

Base product options are optional and we need to them only if we’re composing a layered product built on another
(base) product.

4.3.1 Options

base_product_name (str) – base product name

base_product_short (str) – base product short name, without spaces and special characters

base_product_version (str) – base product major version

base_product_type = “ga” (str) – base product type, “ga”, “updates” etc., for full list see documentation of pro-
ductmd.

4.3.2 Example

release_name = "RPM Fusion"
release_short = "rf"
release_version = "23.0"

release_is_layered = True

base_product_name = "Fedora"
base_product_short = "Fedora"
base_product_version = "23"

12 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

4.4 General Settings

4.4.1 Options

comps_file [mandatory] (scm_dict, str or None) – reference to comps XML file with installation groups

variants_file [mandatory] (scm_dict or str) – reference to variants XML file that defines release variants and archi-
tectures

failable_deliverables [optional] (list) – list which deliverables on which variant and architecture can fail and not
abort the whole compose. This only applies to buildinstall and iso parts. All other artifacts can be
configured in their respective part of configuration.

Please note that * as a wildcard matches all architectures but src.

comps_filter_environments [optional] (bool) – When set to False, the comps files for variants will not have their
environments filtered to match the variant.

tree_arches ([str]) – list of architectures which should be included; if undefined, all architectures from variants.xml
will be included

tree_variants ([str]) – list of variants which should be included; if undefined, all variants from variants.xml will be
included

repoclosure_backend (str) – Select which tool should be used to run repoclosure over created repositories. By default
yum is used, but you can switch to dnf. Please note that when dnf is used, the build dependencies check is
skipped.

4.4.2 Example

comps_file = {
"scm": "git",
"repo": "https://git.fedorahosted.org/git/comps.git",
"branch": None,
"file": "comps-f23.xml.in",

}

variants_file = {
"scm": "git",
"repo": "https://pagure.io/pungi-fedora.git ",
"branch": None,
"file": "variants-fedora.xml",

}

failable_deliverables = [
('^.*$', {

Buildinstall can fail on any variant and any arch
'*': ['buildinstall'],
'src': ['buildinstall'],
Nothing on i386 blocks the compose
'i386': ['buildinstall', 'iso', 'live'],

})
]

tree_arches = ["x86_64"]
tree_variants = ["Server"]

4.4. General Settings 13

Pungi Documentation, Release 4.1.16

4.5 Image Naming

Both image name and volume id are generated based on the configuration. Since the volume id is limited to 32
characters, there are more settings available. The process for generating volume id is to get a list of possible formats
and try them sequentially until one fits in the length limit. If substitutions are configured, each attempted volume id
will be modified by it.

For layered products, the candidate formats are first image_volid_layered_product_formats followed by
image_volid_formats. Otherwise, only image_volid_formats are tried.

If no format matches the length limit, an error will be reported and compose aborted.

4.5.1 Options

There a couple common format specifiers available for both the options:

• compose_id

• release_short

• version

• date

• respin

• type

• type_suffix

• label

• label_major_version

• variant

• arch

• disc_type

image_name_format [optional] (str) – Python’s format string to serve as template for image names

This format will be used for all phases generating images. Currently that means createiso, live_images
and buildinstall.

Available extra keys are:

• disc_num

• suffix

image_volid_formats [optional] (list) – A list of format strings for generating volume id.

The extra available keys are:

• base_product_short

• base_product_version

image_volid_layered_product_formats [optional] (list) – A list of format strings for generating volume id for lay-
ered products. The keys available are the same as for image_volid_formats.

volume_id_substitutions [optional] (dict) – A mapping of string replacements to shorten the volume id.

disc_types [optional] (dict) – A mapping for customizing disc_type used in image names.

14 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

Available keys are:

• boot – for boot.iso images created in buildinstall phase

• live – for images created by live_images phase

• dvd – for images created by createiso phase

• ostree – for ostree installer images

Default values are the same as the keys.

4.5.2 Example

Image name respecting Fedora's image naming policy
image_name_format = "%(release_short)s-%(variant)s-%(disc_type)s-%(arch)s-%(version)s
↪→%(suffix)s"
Use the same format for volume id
image_volid_formats = [

"%(release_short)s-%(variant)s-%(disc_type)s-%(arch)s-%(version)s"
]
No special handling for layered products, use same format as for regular images
image_volid_layered_product_formats = []
Replace "Cloud" with "C" in volume id etc.
volume_id_substitutions = {

'Cloud': 'C',
'Alpha': 'A',
'Beta': 'B',
'TC': 'T',

}

disc_types = {
'boot': 'netinst',
'live': 'Live',
'dvd': 'DVD',

}

4.6 Signing

If you want to sign deliverables generated during pungi run like RPM wrapped images. You must provide few config-
uration options:

signing_command [optional] (str) – Command that will be run with a koji build as a single argument. This command
must not require any user interaction. If you need to pass a password for a signing key to the command, do this
via command line option of the command and use string formatting syntax %(signing_key_password)s.
(See signing_key_password_file).

signing_key_id [optional] (str) – ID of the key that will be used for the signing. This ID will be used when craft-
ing koji paths to signed files (kojipkgs.fedoraproject.org/packages/NAME/VER/REL/data/
signed/KEYID/..).

signing_key_password_file [optional] (str) – Path to a file with password that will be formatted into sign-
ing_command string via %(signing_key_password)s string format syntax (if used). Because pungi
config is usualy stored in git and is part of compose logs we don’t want password to be included directly in the
config. Note: If - string is used instead of a filename, then you will be asked for the password interactivelly
right after pungi starts.

4.6. Signing 15

Pungi Documentation, Release 4.1.16

4.6.1 Example

signing_command = '~/git/releng/scripts/sigulsign_unsigned.py -vv --password=
↪→%(signing_key_password)s fedora-24'
signing_key_id = '81b46521'
signing_key_password_file = '~/password_for_fedora-24_key'

4.7 Git URLs

In multiple places the config requires URL of a Git repository to download some file from. This URL is passed on to
Koji. It is possible to specify which commit to use using this syntax:

git://git.example.com/git/repo-name.git?#<rev_spec>

The <rev_spec> pattern can be replaced with actual commit SHA, a tag name, HEAD to indicate that tip of default
branch should be used or origin/<branch_name> to use tip of arbitrary branch.

If the URL specifies a branch or HEAD, Pungi will replace it with the actual commit SHA. This will later show up in
Koji tasks and help with tracing what particular inputs were used.

Note: The origin must be specified because of the way Koji works with the repository. It will clone the repository
then switch to requested state with git reset --hard REF. Since no local branches are created, we need to use
full specification including the name of the remote.

4.8 Createrepo Settings

4.8.1 Options

createrepo_checksum (str) – specify checksum type for createrepo; expected values: sha512, sha256, sha.
Defaults to sha256.

createrepo_c = True (bool) – use createrepo_c (True) or legacy createrepo (False)

createrepo_deltas = False (bool) – generate delta RPMs against an older compose. This needs to be used together
with –old-composes‘ command line argument.

createrepo_use_xz = False (bool) – whether to pass --xz to the createrepo command. This will cause the SQLite
databases to be compressed with xz.

product_id = None (scm_dict) – If specified, it should point to a directory with certificates
<variant_uid>-<arch>-*.pem. This certificate will be injected into the repository.

product_id_allow_missing = False (bool) – When product_id is used and a certificate for some variant is miss-
ing, an error will be reported by default. Use this option to instead ignore the missing certificate.

4.8.2 Example

createrepo_checksum = "sha"

16 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

4.9 Package Set Settings

4.9.1 Options

sigkeys ([str or None]) – priority list of sigkeys, None means unsigned

pkgset_source [mandatory] (str) – “koji” (any koji instance) or “repos” (arbitrary yum repositories)

pkgset_koji_tag [mandatory] (str) – tag to read package set from

pkgset_koji_inherit = True (bool) – inherit builds from parent tags; we can turn it off only if we have all builds
tagged in a single tag

pkgset_repos (dict) – A mapping of architectures to repositories with RPMs: {arch: [repo]}. Only use when
pkgset_source = "repos".

4.9.2 Example

sigkeys = [None]
pkgset_source = "koji"
pkgset_koji_tag = "f23"

4.10 Buildinstall Settings

Script or process that creates bootable images with Anaconda installer is historically called buildinstall.

4.10.1 Options

bootable (bool) – whether to run the buildinstall phase

buildinstall_method (str) – “lorax” (f16+, rhel7+) or “buildinstall” (older releases)

buildinstall_upgrade_image [deprecated] (bool) – use noupgrade with lorax_options instead

lorax_options (list) – special options passed on to lorax.

Format: [(variant_uid_regex, {arch|*: {option: name}})].

Recognized options are:

• bugurl – str (default None)

• nomacboot – bool (default True)

• noupgrade – bool (default True)

buildinstall_kickstart (scm_dict) – If specified, this kickstart file will be copied into each file and pointed to in boot
configuration.

4.10.2 Example

4.9. Package Set Settings 17

https://git.fedorahosted.org/cgit/anaconda.git/tree/scripts/buildinstall?h=f15-branch

Pungi Documentation, Release 4.1.16

bootable = True
buildinstall_method = "lorax"

Enables macboot on x86_64 for all variants and builds upgrade images
everywhere.
lorax_options = [

("^.*$", {
"x86_64": {

"nomacboot": False
}
"*": {

"noupgrade": False
}

})
]

Note: It is advised to run buildinstall (lorax) in koji, i.e. with runroot enabled for clean build environments, better
logging, etc.

Warning: Lorax installs RPMs into a chroot. This involves running %post scriptlets and they frequently run
executables in the chroot. If we’re composing for multiple architectures, we must use runroot for this reason.

4.11 Gather Settings

4.11.1 Options

gather_source [mandatory] (str) – from where to read initial package list; expected values: “comps”, “none”

gather_method [mandatory] (str) – “deps”, “nodeps”

gather_fulltree = False (bool) – When set to True all RPMs built from an SRPM will always be included. Only use
when gather_method = "deps".

gather_selfhosting = False (bool) – When set to True, Pungi will build a self-hosting tree by following build de-
pendencies. Only use when gather_method = "deps".

greedy_method (str) – This option controls how package requirements are satisfied in case a particular Requires
has multiple candidates.

• none – the best packages is selected to satisfy the dependency and only that one is pulled into the compose

• all – packages that provide the symbol are pulled in

• build – the best package is selected, and then all packages from the same build that provide the symbol
are pulled in

Note: As an example let’s work with this situation: a package in the compose has Requires:
foo. There are three packages with Provides: foo: pkg-a, pkg-b-provider-1 and
pkg-b-provider-2. The pkg-b-* packages are build from the same source package. Best match de-
termines pkg-b-provider-1 as best matching package.

• With greedy_method = "none" only pkg-b-provider-1 will be pulled in.

18 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

• With greedy_method = "all" all three packages will be pulled in.

• With greedy_method = "build" ``pkg-b-provider-1 and pkg-b-provider-2 will be
pulled in.

gather_backend = yum (str) – Either yum or dnf. This changes the entire codebase doing dependency solving, so
it can change the result in unpredictable ways.

Particularly the multilib work is performed differently by using python-multilib library. Please refer to
multilib option to see the differences.

multilib_methods [deprecated] ([str]) – use multilib instead to configure this per-variant

multilib_arches [deprecated] ([str] or None) – use multilib to implicitly configure this: if a variant on any arch
has non-empty multilib methods, it is automatically eligible

multilib (list) – mapping of variant regexes and arches to list of multilib methods

Available methods are:

• none – no package matches this method

• all – all packages match this method

• runtime – packages that install some shared object file (*.so.*) will match.

• devel – packages whose name ends with -devel or --static suffix will be matched. When
dnf is used, this method automatically enables runtime method as well. With yum backend this
method also uses a hardcoded blacklist and whitelist.

• kernel – packages providing kernel or kernel-devel match this method (only in yum back-
end)

• yaboot – only yaboot package on ppc arch matches this (only in yum backend)

additional_packages (list) – additional packages to be included in a variant and architecture; format:
[(variant_uid_regex, {arch|*: [package_globs]})]

filter_packages (list) – packages to be excluded from a variant and architecture; format:
[(variant_uid_regex, {arch|*: [package_globs]})]

filter_system_release_packages (bool) – for each variant, figure out the best system release package and filter out all
others. This will not work if a variant needs more than one system release package. In such case, set this option
to False.

gather_prepopulate = None (scm_dict) – If specified, you can use this to add additional packages. The for-
mat of the file pointed to by this option is a JSON mapping {variant_uid: {arch: {build:
[package]}}}. Packages added through this option can not be removed by filter_packages.

multilib_blacklist (dict) – multilib blacklist; format: {arch|*: [package_globs]}. The patterns are tested
with fnmatch, so shell globbing is used (not regular expression).

multilib_whitelist (dict) – multilib blacklist; format: {arch|*: [package_names]}. The whitelist must
contain exact package names; there are no wildcards or pattern matching.

gather_lookaside_repos = [] (list) – lookaside repositories used for package gathering; format:
[(variant_uid_regex, {arch|*: [repo_urls]})]

hashed_directories = False (bool) – put packages into “hashed” directories, for example Packages/k/
kernel-4.0.4-301.fc22.x86_64.rpm

check_deps = True (bool) – Set to False if you don’t want the compose to abort when some package has broken
dependencies.

4.11. Gather Settings 19

Pungi Documentation, Release 4.1.16

gather_source_mapping (str) – Only use when gather_source = "json". The value should be a path to
JSON file with following mapping: {variant: {arch: {rpm_name: [rpm_arch|None]}}}.

4.11.2 Example

gather_source = "comps"
gather_method = "deps"
greedy_method = "build"
check_deps = False
hashed_directories = True

additional_packages = [
bz#123456
('^(Workstation|Server)$', {

'*': [
'grub2',
'kernel',

],
}),

]

filter_packages = [
bz#111222
('^.*$', {

'*': [
'kernel-doc',

],
}),

]

multilib = [
('^Server$', {

'x86_64': ['devel', 'runtime']
})

]

multilib_blacklist = {
"*": [

"gcc",
],

}

multilib_whitelist = {
"*": [

"alsa-plugins-*",
],

}

gather_lookaside_repos = [
('^.*$', {
'x86_64': [
"https://dl.fedoraproject.org/pub/fedora/linux/releases/22/Everything/
↪→x86_64/os/",
"https://dl.fedoraproject.org/pub/fedora/linux/releases/22/Everything/
↪→source/SRPMS/",
]
}),

20 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

]

Note: It is a good practice to attach bug/ticket numbers to additional_packages, filter_packages, multilib_blacklist
and multilib_whitelist to track decisions.

4.12 Koji Settings

4.12.1 Options

koji_profile (str) – koji profile name

runroot [mandatory] (bool) – run some tasks such as buildinstall or createiso in koji build root (True) or locally
(False)

runroot_channel (str) – name of koji channel

runroot_tag (str) – name of koji build tag used for runroot

runroot_weights (dict) – customize task weights for various runroot tasks. The values in the mapping should be
integers, the keys can be selected from the following list. By default no weight is assigned and Koji picks the
default one according to policy.

• buildinstall

• createiso

• ostree

• ostree_installer

4.12.2 Example

koji_profile = "koji"
runroot = True
runroot_channel = "runroot"
runroot_tag = "f23-build"

4.13 Extra Files Settings

4.13.1 Options

extra_files (list) – references to external files to be placed in os/ directory and media; format: [(variant_uid_regex,
{arch|*: [scm_dicts]})]

4.13.2 Example

4.12. Koji Settings 21

Pungi Documentation, Release 4.1.16

extra_files = [
('^.*$', {

'*': [
GPG keys
{

"scm": "rpm",
"repo": "fedora-repos",
"branch": None,
"file": [

"/etc/pki/rpm-gpg/RPM-GPG-KEY-22-fedora",
],
"target": "",

},
GPL
{

"scm": "git",
"repo": "https://pagure.io/pungi-fedora",
"branch": None,
"file": [

"GPL",
],
"target": "",

},
],

}),
]

4.13.3 Extra Files Metadata

If extra files are specified a metadata file, extra_files.json, is placed in the os/ directory and media. The
checksums generated are determined by media_checksums option. This metadata file is in the format:

{
"header": {"version": "1.0},
"data": [
{

"file": "GPL",
"checksums": {

"sha256": "8177f97513213526df2cf6184d8ff986c675afb514d4e68a404010521b880643"
},
"size": 18092

},
{

"file": "release-notes/notes.html",
"checksums": {

"sha256": "82b1ba8db522aadf101dca6404235fba179e559b95ea24ff39ee1e5d9a53bdcb"
},
"size": 1120

}
]

}

22 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

4.14 Productimg Settings

Product images are placed on installation media and provide additional branding and Anaconda changes specific to
product variants.

4.14.1 Options

productimg = False (bool) – create product images; requires bootable=True

productimg_install_class (scm_dict, str) – reference to install class file

productimg_po_files (scm_dict, str) – reference to a directory with po files for install class translations

4.14.2 Example

productimg = True
productimg_install_class = {

"scm": "git",
"repo": "http://git.example.com/productimg.git",
"branch": None,
"file": "fedora23/%(variant_id)s.py",

}
productimg_po_files = {

"scm": "git",
"repo": "http://git.example.com/productimg.git",
"branch": None,
"dir": "po",

}

4.15 CreateISO Settings

4.15.1 Options

createiso_skip = False (list) – mapping that defines which variants and arches to skip during createiso; format: [(vari-
ant_uid_regex, {arch|*: True})]

create_jigdo = True (bool) – controls the creation of jigdo from ISO

create_optional_isos = False (bool) – when set to True, ISOs will be created even for optional variants. By
default only variants with type variant or layered-product will get ISOs.

iso_size = 4700000000 (int|str) – size of ISO image. The value should either be an integer meaning size in bytes, or
it can be a string with k, M, G suffix (using multiples of 1024).

split_iso_reserve = 10MiB (int|str) – how much free space should be left on each disk. The format is the same as for
iso_size option.

Note: Source architecture needs to be listed explicitly. Excluding ‘*’ applies only on binary arches. Jigdo causes
significant increase of time to ISO creation.

4.14. Productimg Settings 23

Pungi Documentation, Release 4.1.16

4.15.2 Example

createiso_skip = [
('^Workstation$', {

'*': True,
'src': True

}),
]

4.16 Automatic generation of version and release

Version and release values for certain artifacts can be generated automatically based on release version, compose label,
date, type and respin. This can be used to shorten the config and keep it the same for multiple uses.

Compose ID Label Version Release
F-Rawhide-20170406.n.0 - Rawhide 20170406.n.0
F-26-20170329.1 Alpha-1.6 26_Alpha 1.6
F-Atomic-25-20170407.0 RC-20170407.0 25 20170407.0
F-Atomic-25-20170407.0 - 25 20170407.0

All non-RC milestones from label get appended to the version. For release either label is used or date, type and respin.

4.17 Common options for Live Images, Live Media and Image Build

All images can have ksurl, version, release and target specified. Since this can create a lot of duplication,
there are global options that can be used instead.

For each of the phases, if the option is not specified for a particular deliverable, an option named
<PHASE_NAME>_<OPTION> is checked. If that is not specified either, the last fallback is global_<OPTION>. If
even that is unset, the value is considered to not be specified.

The kickstart URL is configured by these options.

• global_ksurl – global fallback setting

• live_media_ksurl

• image_build_ksurl

• live_images_ksurl

Target is specified by these settings. For live images refer to live_target.

• global_target – global fallback setting

• live_media_target

• image_build_target

Version is specified by these options. If no version is set, a default value will be provided according to automatic
versioning.

• global_version – global fallback setting

• live_media_version

• image_build_version

• live_images_version

24 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

Release is specified by these options. If set to a magic value to !RELEASE_FROM_LABEL_DATE_TYPE_RESPIN,
a value will be generated according to automatic versioning.

• global_release – global fallback setting

• live_media_release

• image_build_release

• live_images_release

Each configuration block can also optionally specify a failable key. For live images it should have a boolean value.
For live media and image build it should be a list of strings containing architectures that are optional. If any deliverable
fails on an optional architecture, it will not abort the whole compose. If the list contains only "*", all arches will be
substituted.

4.18 Live Images Settings

live_target (str) – Koji build target for which to build the images. This gets passed to koji spin-livecd.

live_images (list) – Configuration for the particular image. The elements of the list should be tuples
(variant_uid_regex, {arch|*: config}). The config should be a dict with these keys:

• kickstart (str)

• ksurl (str) [optional] – where to get the kickstart from

• name (str)

• version (str)

• repo (str|[str]) – repos specified by URL or variant UID

• specfile (str) – for images wrapped in RPM

• scratch (bool) – only RPM-wrapped images can use scratch builds, but by default this is
turned off

• type (str) – what kind of task to start in Koji. Defaults to live meaning koji
spin-livecd will be used. Alternative option is appliance corresponding to koji
spin-appliance.

• sign (bool) – only RPM-wrapped images can be signed

Deprecated options:

• additional_repos – deprecated, use repo instead

• repo_from – deprecated, use repo instead

live_images_no_rename (bool) – When set to True, filenames generated by Koji will be used. When False,
filenames will be generated based on image_name_format configuration option.

4.19 Live Media Settings

live_media (dict) – configuration for koji spin-livemedia; format: {variant_uid_regex:
[{opt:value}]}

Required options:

• name (str)

4.18. Live Images Settings 25

Pungi Documentation, Release 4.1.16

• version (str)

• target (str)

• arches ([str]) – what architectures to build the media for; by default uses all arches for the variant.

• kickstart (str) – name of the kickstart file

Available options:

• ksurl (str)

• ksversion (str)

• scratch (bool)

• release (str) – a string with the release, or !RELEASE_FROM_LABEL_DATE_TYPE_RESPIN
to automatically generate a suitable value. See automatic versioning for details.

• skip_tag (bool)

• repo (str|[str]) – repos specified by URL or variant UID

• title (str)

• install_tree_from (str) – variant to take install tree from

Deprecated options:

• repo_from – deprecated, use repo instead

4.20 Image Build Settings

image_build (dict) – config for koji image-build; format: {variant_uid_regex: [{opt: value}]}

By default, images will be built for each binary arch valid for the variant. The config can specify a list of arches
to narrow this down.

Note: Config can contain anything what is accepted by koji image-build --config configfile.ini

Repo can be specified either as a string or a list of strings. It will be automatically transformed into format suitable for
koji. A repo for the currently built variant will be added as well.

If you explicitly set release to !RELEASE_FROM_LABEL_DATE_TYPE_RESPIN, it will be replaced with a
value generated as described in automatic versioning.

Please don’t set install_tree. This gets automatically set by pungi based on current variant. You can use
install_tree_from key to use install tree from another variant.

The format attr is [(‘image_type’, ‘image_suffix’), ...]. See productmd documentation for list of supported types
and suffixes.

If ksurl ends with #HEAD, Pungi will figure out the SHA1 hash of current HEAD and use that instead.

Setting scratch to True will run the koji tasks as scratch builds.

4.20.1 Example

26 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

image_build = {
'^Server$': [

{
'image-build': {

'format': [('docker', 'tar.gz'), ('qcow2', 'qcow2')]
'name': 'fedora-qcow-and-docker-base',
'target': 'koji-target-name',
'ksversion': 'F23', # value from pykickstart
'version': '23',
correct SHA1 hash will be put into the URL below automatically
'ksurl': 'https://git.fedorahosted.org/git/spin-kickstarts.git?

↪→somedirectoryifany#HEAD',
'kickstart': "fedora-docker-base.ks",
'repo': ["http://someextrarepos.org/repo", "ftp://rekcod.oi/repo"],
'distro': 'Fedora-20',
'disk_size': 3,

this is set automatically by pungi to os_dir for given variant
'install_tree': 'http://somepath',

},
'factory-parameters': {

'docker_cmd': "['/bin/bash']",
'docker_env': "['PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/

↪→bin:/sbin:/bin']",
'docker_labels': "{'Name': 'fedora-docker-base', 'License': u'GPLv2',

↪→'RUN': 'docker run -it --rm ${OPT1} --privileged -v \`pwd\`:/atomicapp -v /run:/run
↪→-v /:/host --net=host --name ${NAME} -e NAME=${NAME} -e IMAGE=${IMAGE} ${IMAGE} -v $
↪→{OPT2} run ${OPT3} /atomicapp', 'Vendor': 'Fedora Project', 'Version': '23',
↪→'Architecture': 'x86_64' }",

}
},
{

'image-build': {
'format': [('docker', 'tar.gz'), ('qcow2', 'qcow2')]
'name': 'fedora-qcow-and-docker-base',
'target': 'koji-target-name',
'ksversion': 'F23', # value from pykickstart
'version': '23',
correct SHA1 hash will be put into the URL below automatically
'ksurl': 'https://git.fedorahosted.org/git/spin-kickstarts.git?

↪→somedirectoryifany#HEAD',
'kickstart': "fedora-docker-base.ks",
'repo': ["http://someextrarepos.org/repo", "ftp://rekcod.oi/repo"],
'distro': 'Fedora-20',
'disk_size': 3,

this is set automatically by pungi to os_dir for given variant
'install_tree': 'http://somepath',

}
},
{

'image-build': {
'format': [('qcow2','qcow2')]
'name': 'fedora-qcow-base',
'target': 'koji-target-name',
'ksversion': 'F23', # value from pykickstart
'version': '23',
'ksurl': 'https://git.fedorahosted.org/git/spin-kickstarts.git?

↪→somedirectoryifany#HEAD',

4.20. Image Build Settings 27

Pungi Documentation, Release 4.1.16

'kickstart': "fedora-docker-base.ks",
'distro': 'Fedora-23',

only build this type of image on x86_64
'arches': ['x86_64']

Use install tree and repo from Everything variant.
'install_tree_from': 'Everything',
'repo': ['Everything'],

Set release automatically.
'release': '!RELEASE_FROM_LABEL_DATE_TYPE_RESPIN',

}
}

]
}

4.21 OSTree Settings

The ostree phase of Pungi can create ostree repositories. This is done by running rpm-ostree compose in
a Koji runroot environment. The ostree repository itself is not part of the compose and should be located in another
directory. Any new packages in the compose will be added to the repository with a new commit.

ostree (dict) – a variant/arch mapping of configuration. The format should be [(variant_uid_regex,
{arch|*: config_dict})].

The configuration dict for each variant arch pair must have these keys:

• treefile – (str) Filename of configuration for rpm-ostree.

• config_url – (str) URL for Git repository with the treefile.

• repo – (str|dict|[str|dict]) repos specified by URL or variant UID or a dict of repo options, baseurl is
required in the dict.

• ostree_repo – (str) Where to put the ostree repository

These keys are optional:

• keep_original_sources – (bool) Keep the existing source repos in the tree config file. If not en-
abled, all the original source repos will be removed from the tree config file.

• config_branch – (str) Git branch of the repo to use. Defaults to master.

• failable – ([str]) List of architectures for which this deliverable is not release blocking.

• update_summary – (bool) Update summary metadata after tree composing. Defaults to False.

• version – (str) Version string to be added as versioning metadata. If this option is set to !
OSTREE_VERSION_FROM_LABEL_DATE_TYPE_RESPIN, a value will be generated automatically as
$VERSION.$RELEASE. See how those values are created.

• tag_ref – (bool, default True) If set to False, a git reference will not be created.

Deprecated options:

• repo_from – Deprecated, use repo instead.

• source_repo_from – Deprecated, use repo instead.

• extra_source_repos – Deprecated, use repo instead.

28 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

4.21.1 Example config

ostree = [
("^Atomic$", {

"x86_64": {
"treefile": "fedora-atomic-docker-host.json",
"config_url": "https://git.fedorahosted.org/git/fedora-atomic.git",
"repo": [

"Server",
"http://example.com/repo/x86_64/os",
{"baseurl": "Everything"},
{"baseurl": "http://example.com/linux/repo", "exclude": "systemd-

↪→container"},
],
"keep_original_sources": True,
"ostree_repo": "/mnt/koji/compose/atomic/Rawhide/",
"update_summary": True,
Automatically generate a reasonable version
"version": "!OSTREE_VERSION_FROM_LABEL_DATE_TYPE_RESPIN",

}
})

]

4.22 Ostree Installer Settings

The ostree_installer phase of Pungi can produce installer image bundling an OSTree repository. This always
runs in Koji as a runroot task.

ostree_installer (dict) – a variant/arch mapping of configuration. The format should be [(variant_uid_regex,
{arch|*: config_dict})].

The configuration dict for each variant arch pair must have this key:

These keys are optional:

• repo – (str|[str]) repos specified by URL or variant UID

• release – (str) Release value to set for the installer image. Set to !
RELEASE_FROM_LABEL_DATE_TYPE_RESPIN to generate the value automatically.

• failable – ([str]) List of architectures for which this deliverable is not release blocking.

These optional keys are passed to lorax to customize the build.

• installpkgs – ([str])

• add_template – ([str])

• add_arch_template – ([str])

• add_template_var – ([str])

• add_arch_template_var – ([str])

• rootfs_size – ([str])

• template_repo – (str) Git repository with extra templates.

• template_branch – (str) Branch to use from template_repo.

4.22. Ostree Installer Settings 29

Pungi Documentation, Release 4.1.16

The templates can either be absolute paths, in which case they will be used as configured; or they can be relative
paths, in which case template_repo needs to point to a Git repository from which to take the templates.

Deprecated options:

• repo_from – Deprecated, use repo instead.

• source_repo_from – Deprecated, use repo instead.

4.22.1 Example config

ostree_installer = [
("^Atomic$", {

"x86_64": {
"repo": [

"Everything",
"https://example.com/extra-repo1.repo",
"https://example.com/extra-repo2.repo",

],
"release": "!RELEASE_FROM_LABEL_DATE_TYPE_RESPIN",
"installpkgs": ["fedora-productimg-atomic"],
"add_template": ["atomic-installer/lorax-configure-repo.tmpl"],
"add_template_var": [

"ostree_osname=fedora-atomic",
"ostree_ref=fedora-atomic/Rawhide/x86_64/docker-host",

],
"add_arch_template": ["atomic-installer/lorax-embed-repo.tmpl"],
"add_arch_template_var": [

"ostree_repo=https://kojipkgs.fedoraproject.org/compose/atomic/
↪→Rawhide/",

"ostree_osname=fedora-atomic",
"ostree_ref=fedora-atomic/Rawhide/x86_64/docker-host",

]
'template_repo': 'https://git.fedorahosted.org/git/spin-kickstarts.git',
'template_branch': 'f24',

}
})

]

4.23 OSBS Settings

Pungi can build docker images in OSBS. The build is initiated through Koji container-build plugin. The base
image will be using RPMs from the current compose and a Dockerfile from specified Git repository.

Please note that the image is uploaded to a Docker v2 registry and not exported into compose directory. There will
be a metadata file in compose/metadata/osbs.json with details about the built images (assuming they are not
scratch builds).

osbs (dict) – a mapping from variant regexes to configuration blocks. The format should be
{variant_uid_regex: [config_dict]}.

The configuration for each image must have at least these keys:

• url – (str) URL pointing to a Git repository with Dockerfile. Please see Git URLs section for more
details.

• target – (str) A Koji target to build the image for.

30 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

• git_branch – (str) A branch in SCM for the Dockerfile. This is required by OSBS to avoid race
conditions when multiple builds from the same repo are submitted at the same time. Please note that url
should contain the branch or tag name as well, so that it can be resolved to a particular commit hash.

Optionally you can specify failable. If it has a truthy value, failure to create the image will not abort the
whole compose.

Note: Once OSBS gains support for multiple architectures, the usage of this option will most likely change to
list architectures that are allowed to fail.

The configuration will pass other attributes directly to the Koji task. This includes name, version, scratch
and priority.

A value for yum_repourls will be created automatically and point at a repository in the current compose.
You can add extra repositories with repo key having a list of urls pointing to .repo files or just variant uid,
Pungi will create the .repo file for that variant. gpgkey can be specified to enable gpgcheck in repo files for
variants.

4.23.1 Example config

osbs = {
"^Server$": {

required
"url": "git://example.com/dockerfiles.git?#HEAD",
"target": "f24-docker-candidate",
"git_branch": "f24-docker",

optional
"name": "fedora-docker-base",
"version": "24",
"repo": ["Everything", "https://example.com/extra-repo.repo"],
This will result in three repo urls being passed to the task.
They will be in this order: Server, Everything, example.com/
"gpgkey": 'file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release',

}
}

4.24 Media Checksums Settings

media_checksums (list) – list of checksum types to compute, allowed values are anything supported by Python’s
hashlib module (see documentation for details).

media_checksum_one_file (bool) – when True, only one CHECKSUM file will be created per directory; this option
requires media_checksums to only specify one type

media_checksum_base_filename (str) – when not set, all checksums will be save to a file named either CHECKSUM
or based on the digest type; this option allows adding any prefix to that name

It is possible to use format strings that will be replace by actual values. The allowed keys are:

• arch

• compose_id

• date

4.24. Media Checksums Settings 31

https://docs.python.org/2/library/hashlib.html

Pungi Documentation, Release 4.1.16

• label

• label_major_version

• release_short

• respin

• type

• type_suffix

• version

• version

For example, for Fedora the prefix should be %(release_short)s-%(variant)s-%(version)s-%(date)s%(type_suffix)s.
%(respin)s.

4.25 Translate Paths Settings

translate_paths (list) – list of paths to translate; format: [(path, translated_path)]

Note: This feature becomes useful when you need to transform compose location into e.g. a HTTP repo which is can
be passed to koji image-build. The path part is normalized via os.path.normpath().

4.25.1 Example config

translate_paths = [
("/mnt/a", "http://b/dir"),

]

4.25.2 Example usage

>>> from pungi.util import translate_paths
>>> print translate_paths(compose_object_with_mapping, "/mnt/a/c/somefile")
http://b/dir/c/somefile

4.26 Miscelanous Settings

paths_module (str) – Name of Python module implementing the same interface as pungi.paths. This module
can be used to override where things are placed.

link_type = hardlink-or-copy (str) – Method of putting packages into compose directory.

Available options:

• hardlink-or-copy

• hardlink

• copy

32 Chapter 4. Configuration

Pungi Documentation, Release 4.1.16

• symlink

• abspath-symlink

skip_phases (list) – List of phase names that should be skipped. The same functionality is available via a command
line option.

release_discinfo_description (str) – Override description in .discinfo files. The value is a format string accept-
ing %(variant_name)s and %(arch)s placeholders.

symlink_isos_to (str) – If set, the ISO files from buildinstall, createiso and live_images phases will
be put into this destination, and a symlink pointing to this location will be created in actual compose directory.

4.26. Miscelanous Settings 33

Pungi Documentation, Release 4.1.16

34 Chapter 4. Configuration

CHAPTER

FIVE

PROGRESS NOTIFICATION

Pungi has the ability to emit notification messages about progress and general status of the compose. These can be
used to e.g. send messages to fedmsg. This is implemented by actually calling a separate script.

The script will be called with one argument describing action that just happened. A JSON-encoded object will be
passed to standard input to provide more information about the event. At the very least, the object will contain a
compose_id key.

The script is invoked in compose directory and can read other information there.

Currently these messages are sent:

• status-change – when composing starts, finishes or fails; a status key is provided to indicate details

• phase-start – on start of a phase

• phase-stop – when phase is finished

• createiso-targets – with a list of images to be created

• createiso-imagedone – when any single image is finished

• createiso-imagefail – when any single image fails to create

• fail-to-start – when there are incorrect CLI options or errors in configuration file; this message does not
contain compose_id nor is it started in the compose directory (which does not exist yet)

• ostree – when a new commit is created, this message will announce its hash and the name of ref it is meant
for.

For phase related messages phase_name key is provided as well.

A pungi-fedmsg-notification script is provided and understands this interface.

5.1 Setting it up

The script should be provided as a command line argument --notification-script.

--notification-script=pungi-fedmsg-notification

35

	About Pungi
	Tool overview
	Links
	Origin of name

	Contributing to Pungi
	Set up development environment
	Developing
	Testing
	Documenting

	Testing Pungi
	Test Data
	Unit Tests
	Functional Tests

	Configuration
	Minimal Config Example
	Release
	Base Product
	General Settings
	Image Naming
	Signing
	Git URLs
	Createrepo Settings
	Package Set Settings
	Buildinstall Settings
	Gather Settings
	Koji Settings
	Extra Files Settings
	Productimg Settings
	CreateISO Settings
	Automatic generation of version and release
	Common options for Live Images, Live Media and Image Build
	Live Images Settings
	Live Media Settings
	Image Build Settings
	OSTree Settings
	Ostree Installer Settings
	OSBS Settings
	Media Checksums Settings
	Translate Paths Settings
	Miscelanous Settings

	Progress notification
	Setting it up

