from sympy.core.expr import Expr
from sympy.core import sympify, S
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.vector import Vector
from sympy.vector.scalar import BaseScalar
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.function import Derivative
def _get_coord_sys_from_expr(expr, coord_sys=None):
"""
expr : expression
The coordinate system is extracted from this parameter.
"""
if coord_sys is not None:
SymPyDeprecationWarning(
feature="coord_sys parameter",
useinstead="do not use it",
deprecated_since_version="1.1",
issue=12884,
).warn()
try:
coord_sys = list(expr.atoms(CoordSys3D))
if len(coord_sys) == 1:
return coord_sys[0]
else:
return None
except:
return None
class Gradient(Expr):
"""
Represents unevaluated Gradient.
Examples
========
>>> from sympy.vector import CoordSys3D, Gradient
>>> R = CoordSys3D('R')
>>> s = R.x*R.y*R.z
>>> Gradient(s)
Gradient(R.x*R.y*R.z)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **kwargs):
return gradient(self._expr, doit=True)
class Divergence(Expr):
"""
Represents unevaluated Divergence.
Examples
========
>>> from sympy.vector import CoordSys3D, Divergence
>>> R = CoordSys3D('R')
>>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> Divergence(v)
Divergence(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **kwargs):
return divergence(self._expr, doit=True)
class Curl(Expr):
"""
Represents unevaluated Curl.
Examples
========
>>> from sympy.vector import CoordSys3D, Curl
>>> R = CoordSys3D('R')
>>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> Curl(v)
Curl(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **kwargs):
return curl(self._expr, doit=True)
[docs]def curl(vect, coord_sys=None, doit=True):
"""
Returns the curl of a vector field computed wrt the base scalars
of the given coordinate system.
Parameters
==========
vect : Vector
The vector operand
coord_sys : CoordSys3D
The coordinate system to calculate the gradient in.
Deprecated since version 1.1
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, curl
>>> R = CoordSys3D('R')
>>> v1 = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> curl(v1)
0
>>> v2 = R.x*R.y*R.z*R.i
>>> curl(v2)
R.x*R.y*R.j + (-R.x*R.z)*R.k
"""
coord_sys = _get_coord_sys_from_expr(vect, coord_sys)
if coord_sys is None:
return Vector.zero
else:
from sympy.vector.functions import express
vectx = express(vect.dot(coord_sys._i), coord_sys, variables=True)
vecty = express(vect.dot(coord_sys._j), coord_sys, variables=True)
vectz = express(vect.dot(coord_sys._k), coord_sys, variables=True)
outvec = Vector.zero
outvec += (Derivative(vectz * coord_sys._h3, coord_sys._y) -
Derivative(vecty * coord_sys._h2, coord_sys._z)) * coord_sys._i / (coord_sys._h2 * coord_sys._h3)
outvec += (Derivative(vectx * coord_sys._h1, coord_sys._z) -
Derivative(vectz * coord_sys._h3, coord_sys._x)) * coord_sys._j / (coord_sys._h1 * coord_sys._h3)
outvec += (Derivative(vecty * coord_sys._h2, coord_sys._x) -
Derivative(vectx * coord_sys._h1, coord_sys._y)) * coord_sys._k / (coord_sys._h2 * coord_sys._h1)
if doit:
return outvec.doit()
return outvec
[docs]def divergence(vect, coord_sys=None, doit=True):
"""
Returns the divergence of a vector field computed wrt the base
scalars of the given coordinate system.
Parameters
==========
vector : Vector
The vector operand
coord_sys : CoordSys3D
The coordinate system to calculate the gradient in
Deprecated since version 1.1
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, divergence
>>> R = CoordSys3D('R')
>>> v1 = R.x*R.y*R.z * (R.i+R.j+R.k)
>>> divergence(v1)
R.x*R.y + R.x*R.z + R.y*R.z
>>> v2 = 2*R.y*R.z*R.j
>>> divergence(v2)
2*R.z
"""
coord_sys = _get_coord_sys_from_expr(vect, coord_sys)
if coord_sys is None:
return S.Zero
else:
vx = _diff_conditional(vect.dot(coord_sys._i), coord_sys._x, coord_sys._h2, coord_sys._h3) \
/ (coord_sys._h1 * coord_sys._h2 * coord_sys._h3)
vy = _diff_conditional(vect.dot(coord_sys._j), coord_sys._y, coord_sys._h3, coord_sys._h1) \
/ (coord_sys._h1 * coord_sys._h2 * coord_sys._h3)
vz = _diff_conditional(vect.dot(coord_sys._k), coord_sys._z, coord_sys._h1, coord_sys._h2) \
/ (coord_sys._h1 * coord_sys._h2 * coord_sys._h3)
if doit:
return (vx + vy + vz).doit()
return vx + vy + vz
[docs]def gradient(scalar_field, coord_sys=None, doit=True):
"""
Returns the vector gradient of a scalar field computed wrt the
base scalars of the given coordinate system.
Parameters
==========
scalar_field : SymPy Expr
The scalar field to compute the gradient of
coord_sys : CoordSys3D
The coordinate system to calculate the gradient in
Deprecated since version 1.1
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, gradient
>>> R = CoordSys3D('R')
>>> s1 = R.x*R.y*R.z
>>> gradient(s1)
R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> s2 = 5*R.x**2*R.z
>>> gradient(s2)
10*R.x*R.z*R.i + 5*R.x**2*R.k
"""
coord_sys = _get_coord_sys_from_expr(scalar_field, coord_sys)
if coord_sys is None:
return Vector.zero
else:
from sympy.vector.functions import express
scalar_field = express(scalar_field, coord_sys,
variables=True)
vx = Derivative(scalar_field, coord_sys._x) / coord_sys._h1
vy = Derivative(scalar_field, coord_sys._y) / coord_sys._h2
vz = Derivative(scalar_field, coord_sys._z) / coord_sys._h3
if doit:
return (vx * coord_sys._i + vy * coord_sys._j + vz * coord_sys._k).doit()
return vx * coord_sys._i + vy * coord_sys._j + vz * coord_sys._k
def _diff_conditional(expr, base_scalar, coeff_1, coeff_2):
"""
First re-expresses expr in the system that base_scalar belongs to.
If base_scalar appears in the re-expressed form, differentiates
it wrt base_scalar.
Else, returns S(0)
"""
from sympy.vector.functions import express
new_expr = express(expr, base_scalar.system, variables=True)
if base_scalar in new_expr.atoms(BaseScalar):
return Derivative(coeff_1 * coeff_2 * new_expr, base_scalar)
return S(0)